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Preface

This volume is devoted to the lecture courses given to the EuroSchool
PQR2003 on “Poisson Geometry, Deformation Quantisation and Group
Representations” held at the Université Libre de Bruxelles from the 13th
to the 17th of June, 2003.

The EuroSchool was followed by a EuroConference from the 18th to
the 22nd June with a large intersection of the audiences. These linked
EuroSchool and EuroConference were made possible by the generous
support of the European Commission through its High Level Scientific
Conferences programme, contract HPCF-CT-2002-00180, the Fonds Na-
tional belge de la Recherche Scientifique, the Communauté Française de
Belgique, and the Université Libre de Bruxelles. The proceedings of the
Euroconference appear separately in a volume of Letters in Mathemat-
ical Physics.

The idea to organise this meeting was born soon after the Conferences
Moshe Flato in Dijon, in 1999 and 2000. We thought that Moshe would
have appreciated having a new meeting centred around Poisson Geom-
etry, Deformation Quantisation and Group Representations and which
would incidentally celebrate important birthdays of four of our friends
who have made fundamental contributions to this area: Boris Fedosov,
Wilfried Schmid, Daniel Sternheimer, and Alan Weinstein. We particu-
larly thank Alan, Daniel and Wilfried who accepted this proposal and
helped with organising it.

There were four series of four one-hour lectures each given by Alberto
Cattaneo on Formality and Star Products; Ieke Moerdijk and Janez
Mrčun on Lie Groupoids and Lie Algebroids; Wilfried Schmid on Ge-
ometric Methods in Representation Theory ; Alan Weinstein on Morita
Equivalence in Poisson Geometry ; and a two-hour broad presentation
given by Daniel Sternheimer on Deformation theory: A powerful tool in
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physics modelling. We are extremely grateful to the lecturers and their
co-authors for agreeing to write up and publish their lectures, to the
London Mathematical Society for publishing them in their Lecture Notes
series and to Cambridge University Press for their editorial support.

The editors wish to thank all those who took part in both meetings,
with special thanks to the members of the scientific committee and to the
lecturers. We also wish to thank all those who helped with the practical
organisation, in particular Christine and Luc Lemaire, Monique Parker
and Isabelle Renders.

Simone Gutt
Université Libre de Bruxelles & Université de Metz

John Rawnsley
University of Warwick

Daniel Sternheimer
Université de Bourgogne
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1

Introduction

Poisson geometry is a “transitional” subject between noncommutative
algebra and differential geometry (which could be seen as the study of
a very special class of commutative algebras). The physical counterpart
to this transition is the correspondence principle linking quantum to
classical mechanics.

The main purpose of these notes is to present an aspect of Poisson
geometry which is inherited from the noncommutative side: the notion
of Morita equivalence, including the “self-equivalences” known as Picard
groups.

In algebra, the importance of Morita equivalence lies in the fact that
Morita equivalent algebras have, by definition, equivalent categories of
modules. From this it follows that many other invariants, such as co-
homology and deformation theory, are shared by all Morita equivalent
algebras. In addition, one can sometimes understand the representation
theory of a given algebra by analyzing that of a simpler representative of
its Morita equivalence class. In Poisson geometry, the role of “modules”
is played by Poisson maps from symplectic manifolds to a given Pois-
son manifold. The simplest such maps are the inclusions of symplectic
leaves, and indeed the structure of the leaf space is a Morita invariant.
(We will see that this leaf space sometimes has a more rigid structure
than one might expect.)

The main theorem of algebraic Morita theory is that Morita equiva-
lences are implemented by bimodules. The same thing turns out to be
true in Poisson geometry, with the proper geometric definition of “bi-
module”.

Here is a brief outline of what follows this introduction.
Chapter 2 is an introduction to Poisson geometry and some of its

recent generalizations, including Dirac geometry and “twisted” Poisson

3



4 1 Introduction

geometry in the presence of a “background” closed 3-form. Both of these
generalizations are used simultaneously to get a geometric understanding
of new notions of symmetry of growing importance in mathematical
physics, especially with background 3-forms arising throughout string
theory (in the guise of the more familiar closed 2-forms on spaces of
curves).

In Chapter 3, we review various flavors of the algebraic theory of
Morita equivalence in a way which transfers easily to the geometric case.
In fact, some of our examples come from geometry: algebras of smooth
functions. Others come from the quantum side: operator algebras.

Chapter 4 is the heart of these notes, a presentation of the geometric
Morita theory of Poisson manifolds and the closely related Morita theory
of symplectic groupoids. We arrive at this theory via the Morita theory
of Lie groupoids in general.

In Chapter 5, we attempt to remedy a defect in the theory of Chapter
4. Poisson manifolds with equivalent (even isomorphic) representation
categories may not be Morita equivalent. We introduce refined versions
of the representation category (some of which are not really categories!)
which do determine the Morita equivalence class. Much of the material
in this chapter is new and has not yet appeared in print. (Some of it is
based on discussions which came after the PQR Euroschool where this
course was presented.)

Along the way, we comment on a pervasive problem in the geometric
theory. Many constructions involve forming the leaf space of a foliation,
but these leaf spaces are not always manifolds. We make some remarks
about the use of differentiable stacks as a language for admitting patho-
logical leaf spaces into the world of smooth geometry.
Acknowledgements:

We would like to thank all the organizers and participants at the
Euroschool on Poisson Geometry, Deformation Quantization, and Rep-
resentation Theory for the opportunity to present this short course, and
for their feedback at the time of the School. We also thank Stefan Wald-
mann for his comments on the manuscript.

H.B. thanks Freiburg University for its hospitality while part of this
work was being done.



2

Poisson geometry and some generalizations

2.1 Poisson manifolds

Let P be a smooth manifold. A Poisson structure on P is an R-bilinear
Lie bracket {·, ·} on C∞(P ) satisfying the Leibniz rule

{f, gh} = {f, g}h + g{f, h}, for all f, g, h ∈ C∞(P ). (1)

A Poisson algebra is a commutative associative algebra which is also
a Lie algebra so that the associative multiplication and the Lie bracket
are related by (1).

For a function f ∈ C∞(P ), the derivation Xf = {f, ·} is called the
hamiltonian vector field of f . If Xf = 0, we call f a Casimir func-
tion (see Remark 2.4). It follows from (1) that there exists a bivector
field Π ∈ X 2(P ) = Γ(

∧2
TP ) such that

{f, g} = Π(df, dg);

the Jacobi identity for {·, ·} is equivalent to the condition [Π,Π] = 0,
where [·, ·] is the Schouten- Nijenhuis bracket, see e.g. [85].

In local coordinates (x1, · · · , xn), the tensor Π is determined by the
matrix

Πij(x) = {xi, xj}. (2)

If this matrix is invertible at each x, then Π is called nondegenerate or
symplectic. In this case, the local matrices (ωij) = (−Πij)−1 define a
global 2-form ω ∈ Ω2(P ) = Γ(

∧2
T ∗P ), and the condition [Π,Π] = 0 is

equivalent to dω = 0.

Example 2.1 (Constant Poisson structures)
Let P = Rn, and suppose that the Πij(x) are constant. By a linear

5



6 2 Poisson geometry and some generalizations

change of coordinates, one can find new coordinates

(q1, · · · , qk, p1, · · · , pk, e1, · · · , el), 2k + l = n,

so that

Π =
∑

i

∂

∂qi
∧ ∂

∂pi
.

In terms of the bracket, we have

{f, g} =
∑

i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
which is the original Poisson bracket in mechanics. In this example, all
the coordinates ei are Casimirs.

Example 2.2 (Poisson structures on R2)
Any smooth function f : R2 → R defines a Poisson structure in

R2 = {(x1, x2)} by

{x1, x2} := f(x1, x2),

and every Poisson structure on R2 has this form.

Example 2.3 (Lie-Poisson structures)
An important class of Poisson structures are the linear ones. If P

is a (finite-dimensional) vector space V considered as a manifold, with
linear coordinates (x1, · · · , xn), a linear Poisson structure is determined
by constants ck

ij satisfying

{xi, xj} =
n∑

k=1

ck
ijxk. (3)

(We may assume that ck
ij = −ck

ji.) Such Poisson structures are usually
called Lie-Poisson structures, since the Jacobi identity for the Poisson
bracket implies that the ck

ij are the structure constants of a Lie algebra
g, which may be identified in a natural way with V ∗. (Also, these Poisson
structures were originally introduced by Lie [56] himself.) Note that we
may also identify V with g∗. Conversely, any Lie algebra g with structure
constants ck

ij defines by (3) a linear Poisson structure on g∗.

Remark 2.4 (Casimir functions)
Deformation quantization of the Lie-Poisson structure on g∗, see e.g.

[10, 45], leads to the universal enveloping algebra U(g). Elements of the
center of U(g) are known as Casimir elements (or Casimir operators,



2.2 Dirac structures 7

when a representation of g is extended to a representation of U(g)).
These correspond to the center of the Poisson algebra of functions on g∗,
hence, by extension, the designation “Casimir functions” for the center
of any Poisson algebra.

2.2 Dirac structures

We now introduce a simultaneous generalization of Poisson structures
and closed 2-forms. (We will often refer to closed 2-forms as presym-
plectic.)

Each 2-form ω on P corresponds to a bundle map

ω̃ : TP → T ∗P, ω̃(v)(u) = ω(v, u). (4)

Similarly, for a bivector field Π ∈ X 2(P ), we define the bundle map

Π̃ : T ∗P → TP, β(Π̃(α)) = Π(α, β). (5)

The matrix representing Π̃ in the bases (dxi) and (∂/∂xi) corresponding
to local coordinates induced by coordinates (x1, . . . , xn) on P is, up to
a sign, just (2). So bivector fields (or 2-forms) are nondegenerate if and
only if the associated bundle maps are invertible.

By using the maps in (4) and (5), we can describe both closed 2-
forms and Poisson bivector fields as subbundles of TP ⊕T ∗P : we simply
consider the graphs

Lω := graph(ω̃), and LΠ := graph(Π̃).

To see which subbundles of TP ⊕T ∗P are of this form, we introduce the
following canonical structure on TP ⊕ T ∗P :

1) The symmetric bilinear form 〈·, ·〉+ : TP ⊕ T ∗P → R,

〈(X,α), (Y, β)〉+ := α(Y ) + β(X). (6)

2) The bracket [[·, ·]] : Γ(TP ⊕T ∗P )×Γ(TP ⊕T ∗P ) → Γ(TP ⊕T ∗P ),

[[(X,α), (Y, β)]] := ([X,Y ],LXβ − iY dα). (7)

Remark 2.5 (Courant bracket)
The bracket (7) is the non-skew-symmetric version, introduced in [57]

(see also [80]), of T. Courant’s original bracket [27]. The bundle TP ⊕
T ∗P together with the brackets (6) and (7) is an example of a Courant
algebroid [57].
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Using the brackets (6) and (7), we have the following result [27]:

Proposition 2.6 A subbundle L ⊂ TP ⊕ T ∗P is of the form LΠ =
graph(Π̃) (resp. Lω = graph(ω̃)) for a bivector field Π (resp. 2-form ω)
if and only if

i) TP ∩ L = {0} (resp. L ∩ T ∗P = {0}) at all points of P ;
ii) L is maximal isotropic with respect to 〈·, ·〉+;

furthermore, [Π,Π] = 0 (resp. dω = 0) if and only if

iii) Γ(L) is closed under the Courant bracket (7).

Recall that L being isotropic with respect to 〈·, ·〉+ means that, at
each point of P ,

〈(X,α), (Y, β)〉+ = 0

whenever (X,α), (Y, β) ∈ L. Maximality is equivalent to the dimension
condition rank(L) = dim(P ).

A Dirac structure on P is a subbundle L ⊂ TP ⊕ T ∗P which is
maximal isotropic with respect to 〈·, ·〉+ and whose sections are closed
under the Courant bracket (7); in other words, a Dirac structure satisfies
conditions ii) and iii) of Prop. 2.6 but is not necessarily the graph
associated to a bivector field or 2-form.

If L satisfies only ii), it is called an almost Dirac structure, and
we refer to iii) as the integrability condition of a Dirac structure.
The next example illustrates these notions in another situation.

Example 2.7 (Regular foliations)
Let F ⊆ TP be a subbundle, and let F ◦ ⊂ T ∗P be its annihilator.

Then L = F ⊕F ◦ is an almost Dirac structure; it is a Dirac structure if
and only if F satisfies the Frobenius condition

[Γ(F ),Γ(F )] ⊂ Γ(F ).

So regular foliations are examples of Dirac structures.

Example 2.8 (Vector Dirac structures)
If V is a finite-dimensional real vector space, then a vector Dirac

structure on V is a subspace L ⊂ V ⊕ V ∗ which is maximal isotropic
with respect to the symmetric pairing (6).1

1 Vector Dirac structures are sometimes called “linear Dirac structures,” but we
will eschew this name to avoid confusion with linear (i.e. Lie-) Poisson structures.
(See Example 2.3)
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Let L be a vector Dirac structure on V . Let pr1 : V ⊕ V ∗ → V

and pr2 : V ⊕ V ∗ → V ∗ be the canonical projections, and consider the
subspace

R := pr1(L) ⊆ V.

Then L induces a skew-symmetric bilinear form θ on R defined by

θ(X,Y ) := α(Y ), (8)

where X,Y ∈ R and α ∈ V ∗ is such that (X,α) ∈ L.

Exercise
Show that θ is well defined, i.e., (8) is independent of the choice of α.

Conversely, any pair (R, θ), where R ⊆ V is a subspace and θ is a
skew-symmetric bilinear form on R, defines a vector Dirac structure by

L := {(X,α), X ∈ R, α ∈ V ∗ with α|R = iXθ}. (9)

Exercise
Check that L defined in (9) is a vector Dirac structure on V with

associated subspace R and bilinear form θ.

Example 2.8 indicates a simple way in which vector Dirac structures
can be restricted to subspaces.

Example 2.9 (Restriction of Dirac structures to subspaces)
Let L be a vector Dirac structure on V , let W ⊆ V be a subspace, and

consider the pair (R, θ) associated with L. Then W inherits the vector
Dirac structure LW from L defined by the pair

RW := R ∩W, and θW := ι∗θ,

where ι : W ↪→ V is the inclusion map.

Exercise
Show that there is a canonical isomorphism

LW
∼=

L ∩ (W ⊕ V ∗)
L ∩W ◦ . (10)

Let (P,L) be a Dirac manifold, and let ι : N ↪→ P be a submanifold.
The construction in Example 2.9, when applied to TxN ⊆ TxP for all
x ∈ P , defines a maximal isotropic “subbundle” LN ⊂ TN ⊕ T ∗N .
The problem is that LN may not be a continuous family of subspaces.
When LN is a continuous family, it is a smooth bundle which then
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automatically satisfies the integrability condition [27, Cor. 3.1.4], so LN

defines a Dirac structure on N .
The next example is a special case of this construction and is one of

the original motivations for the study of Dirac structures; it illustrates
the connection between Dirac structures and “constraint submanifolds”
in classical mechanics.

Example 2.10 (Momentum level sets)
Let J : P → g∗ be the momentum 2 map for a hamiltonian action of a

Lie group G on a Poisson manifold P [59]. Let µ ∈ g∗ be a regular value
for J , let Gµ be the isotropy group at µ with respect to the coadjoint
action, and consider

Q = J−1(µ) ↪→ P.

At each point x ∈ Q, we have a vector Dirac structure on TxQ given by

(LQ)x :=
Lx ∩ (TxQ⊕ T ∗

x P )
Lx ∩ TxQ◦ . (11)

To show that LQ defines a smooth bundle, it suffices to verify that
Lx ∩ TxQ◦ has constant dimension. (Indeed, if this is the case, then
Lx ∩ (TxQ ⊕ T ∗

x P ) has constant dimension as well, since the quotient
Lx ∩ (TxQ⊕ T ∗

x P )/Lx ∩ TxQ◦ has constant dimension, and this insures
that all bundles are smooth.) A direct computation shows that Lx∩TxQ◦

has constant dimension if and only if the stabilizer groups of the Gµ-
action on Q have constant dimension, which happens whenever the Gµ-
orbits on Q have constant dimension (for instance, when the action of
Gµ on Q is locally free). In this case, LQ is a Dirac structure on Q.

We will revisit this example in Section 2.7.

Remark 2.11 (Complex Dirac structures and generalized complex ge-
ometry)

Using the natural extensions of the symmetric form (6) and the
Courant bracket (7) to (TP ⊕ T ∗P ) ⊗ C, one can define a complex
Dirac structure on a manifold P to be a maximal isotropic complex
subbundle L ⊂ (TP ⊕ T ∗P ) ⊗ C whose sections are closed under the

2 The term “moment” is frequently used instead of “momentum” in this context. In
this paper, we will follow the convention, introduced in [61], that “moment” is
used only in connection with groupoid actions. As we will see (e.g. in Example
4.16), many momentum maps, even for “exotic” theories, are moment maps as
well.
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Courant bracket. If a complex Dirac structure L satisfies the condition

L ∩ L = {0} (12)

at all points of P (here L is the complex conjugate of L), then it is
called a generalized complex structure; such structures were intro-
duced in [43, 46] as a common generalization of complex and symplectic
structures.

To see how complex structures fit into this picture, note that an al-
most complex structure J : TP → TP defines a maximal isotropic
subbundle LJ ⊂ (TP ⊕ T ∗P )⊗ C as the i-eigenbundle of the map

(TP ⊕ T ∗P )⊗ C → (TP ⊕ T ∗P )⊗ C, (X,α) �→ (−J(X), J∗(α)).

The bundle LJ completely characterizes J , and satisfies (12); moreover
LJ satisfies the integrability condition of a Dirac structure if and only
if J is a complex structure.

Similarly, a symplectic structure ω on P can be seen as a generalized
complex structure through the bundle Lω,C, defined as the i-eigenbundle
of the map

(TP ⊕ T ∗P )⊗ C → (TP ⊕ T ∗P )⊗ C, (X,α) �→ (ω̃(X),−ω̃−1(α)).

Note that, by (12), a generalized complex structure is never the com-
plexification of a real Dirac structure. In particular, for a symplectic
structure ω, Lω,C is not the complexification of the real Dirac structure
Lω of Proposition 2.6.

2.3 Twisted structures

A “background” closed 3-form φ ∈ Ω3(P ) can be used to “twist” the
geometry of P [48, 69], leading to a modified notion of Dirac structure
[80], and in particular of Poisson structure. The key point is to use φ to
alter the ordinary Courant bracket (7) as follows:

[[(X,α), (Y, β)]]φ := ([X,Y ],LXβ − iY dα + φ(X,Y, ·)). (13)

We now simply repeat the definitions in Section 2.2 replacing (7) by the
φ-twisted Courant bracket (13).

A φ-twisted Dirac structure on P is a subbundle L ⊂ TP ⊕ T ∗P

which is maximal isotropic with respect to 〈·, ·〉+ (6) and for which

[[Γ(L),Γ(L)]]φ ⊆ Γ(L). (14)
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With this new integrability condition, one can check that the graph of
a bivector field Π is a φ-twisted Dirac structure if and only if

1
2
[Π,Π] = ∧3Π̃(φ);

such bivector fields are called φ-twisted Poisson structures. Similarly,
the graph of a 2-form ω is a φ-twisted Dirac structure if and only if

dω + φ = 0,

in which case ω is called a φ-twisted presymplectic structure.

Remark 2.12 (Terminology)
The term “twisted Dirac structure” and its cousins represent a certain

abuse of terminology, since it is not the Dirac (or Poisson, etc.) structure
which is twisted, but rather the notion of Dirac structure. Nevertheless,
we have chosen to stick to this terminology, rather than the alternative
“Dirac structure with background” [50], because it is consistent with
such existing terms as “twisted sheaf”, and because the alternative terms
lead to some awkward constructions.

Example 2.13 (Cartan-Dirac structures on Lie groups)
Let G be a Lie group whose Lie algebra g is equipped with a nonde-

generate adjoint-invariant symmetric bilinear form (·, ·)g, which we use
to identify TG and T ∗G. In TG ⊕ TG ∼ TG ⊕ T ∗G, we consider the
maximal isotropic subbundle

LG := {(vr − vl,
1
2
(vr + vl)), v ∈ g}, (15)

where vr and vl are the right and left invariant vector fields correspond-
ing to v. One can show that LG is a φG-twisted Dirac structure, where
φG is the bi-invariant Cartan 3-form on G, defined on Lie algebra ele-
ments by

φG(u, v, w) =
1
2
(u, [v, w])g.

We call LG the Cartan-Dirac structure on G associated with (·, ·)g.
Note that LG is of the form LΠ only at points g for which Adg + 1 is
invertible, see also Example 2.19.

These Dirac structures are closely related to the theory of quasi-
hamiltonian spaces and group-valued momentum maps [3, 15, 97], as
well as to quasi-Poisson manifolds [2, 14].
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2.4 Symplectic leaves and local structure of
Poisson manifolds

If Π is a symplectic Poisson structure on P , then Darboux’s theo-
rem asserts that, around each point of P , one can find coordinates
(q1, · · · , qk, p1, · · · , pk) such that

Π =
∑

i

∂

∂qi
∧ ∂

∂pi
.

The corresponding symplectic form ω is

ω =
∑

i

dqi ∧ dpi.

In general, the image of the bundle map (5), Π̃(T ∗P ) ⊆ TP , defines
an integrable singular distribution on P ; in other words, P is a disjoint
union of “leaves” O satisfying TxO = Π̃(T ∗

x P ) for all x ∈ P . The leaf O
through x can be described as the points which can be reached from x

through piecewise hamiltonian paths.
If Π̃ has locally constant rank, we call the Poisson structure Π regu-

lar, in which case it defines a foliation of P in the ordinary sense. Note
that this is always the case on an open dense subset of P , called the
regular part.

The local structure of a Poisson manifold (P,Π) around a regular
point is given by the Lie-Darboux theorem: If Π has constant rank k

around a given point, then there exist coordinates (q1, . . . , qk, p1, . . . , pk,

e1, . . . , el) such that

{qi, pj} = δij , and {qi, qj} = {pi, pj} = {qi, ej} = {pi, ej} = 0.

Thus, the local structure of a regular Poisson manifold is determined by
that of the vector Poisson structures on any of its tangent spaces (in a
given connected component).

In the general case, we have the local splitting theorem [88]:

Theorem 2.14 Around any point x0 in a Poisson manifold P , there
exist coordinates

(q1, . . . , qk, p1, . . . , pk, e1, . . . , el), (q, p, e)(x0) = (0, 0, 0),

such that

Π =
k∑

i=1

∂

∂qi
∧ ∂

∂pi
+

1
2

l∑
i,j=1

ηij(e)
∂

∂ei
∧ ∂

∂ej
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and ηij(0) = 0.

The splitting of Theorem 2.14 has a symplectic factor associated with
the coordinates (qi, pi) and a totally degenerate factor (i.e., with all Pois-
son brackets vanishing at e = 0) associated with the coordinates (ej).
The symplectic factor may be identified with an open subset of the leaf
O through x0; patching them together defines a symplectic structure on
each leaf of the foliation determined by Π. So Π canonically defines a
singular foliation of P by symplectic leaves. The totally degenerate
factor in the local splitting is well-defined up to isomorphism. Its iso-
morphism class is the same at all points in a given symplectic leaf, so
one refers to the totally degenerate factor as the transverse structure
to Π along the leaf.

Example 2.15 (Symplectic leaves of Poisson structures on R2)
Let f : R2 → R be a smooth function, and let us consider the Poisson

structure on R2 = {(x1, x2)} defined by

{x1, x2} := f(x1, x2).

The connected components of the set where f(x1, x2) 
= 0 are the 2-
dimensional symplectic leaves; in the set where f vanishes, each point is
a symplectic leaf.

Example 2.16 (Symplectic leaves of Lie-Poisson structures)
Let us consider g∗, the dual of the Lie algebra g, equipped with its

Lie-Poisson structure, see Example 2.3. The symplectic leaves are just
the coadjoint orbits for any connected group with Lie algebra g. Since
{0} is always an orbit, a Lie-Poisson structure is not regular unless g is
abelian.

Exercise
Describe the symplectic leaves in the duals of su(2), sl(2, R) and a(1)

(nonabelian 2-dimensional Lie algebra).

Remark 2.17 (Linearization problem)
By linearizing at x0 the functions ηij in Theorem 2.14, we can write

{ei, ej} =
∑

k

ck
ijek + O(e2), (16)

and it turns out that ck
ij define a Lie-Poisson structure on the normal

space to the symplectic leaf at x0. The linearization problem consists
of determining whether one can choose suitable “transverse” coordinates
(e1, . . . , el) with respect to which O(e2) in (16) vanishes. For example,
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if the Lie algebra structure on the conormal bundle to a symplectic leaf
determined by the linearization of Π at a point x0 is semi-simple and
of compact type, then Π is linearizable around x0 through a smooth
change of coordinates. The first proof of this theorem, due to Conn [25],
used many estimates and a “hard” implicit function theorem. A “soft”
proof, using only the sort of averaging usually associated with compact
group actions (but for groupoids instead of groups), has recently been
announced by Crainic and Fernandes [31]. There is also a “semilocal”
problem of linearization in the neighborhood of an entire symplectic
leaf. This problem was first addressed by Vorobjev [86], with further
developments by Davis and Wade [32]. For overviews of linearization and
more general normal form questions, we refer to the article of Fernandes
and Monnier [38] and the forthcoming book of Dufour and Zung [35].

A local normal form for Dirac structures was found by Courant [27]
under a strong regularity assumption. The general case has been studied
recently by Dufour and Wade in [34].

2.5 Presymplectic leaves and Poisson quotients of
Dirac manifolds

Let pr1 : TP ⊕T ∗P → TP and pr2 : TP ⊕T ∗P → T ∗P be the canonical
projections. If L ⊂ TP ⊕ T ∗P is a (twisted) Dirac structure on P , then

pr1(L) ⊆ TP (17)

defines a singular distribution on P . Note that if L = LΠ for a Pois-
son structure Π, then pr1(L) = Π̃(T ∗P ), so this distribution coincides
with the one defined by Π, see Section 2.4. It turns out that the inte-
grability condition for (twisted) Dirac structures guarantees that (17) is
integrable in general, so a (twisted) Dirac structure L on P determines
a decomposition of P into leaves O satisfying

TxO = pr1(L)x

at all x ∈ P .
Just as leaves of foliations associated with Poisson structures carry

symplectic forms, each leaf of a (twisted) Dirac manifold P is naturally
equipped with a (twisted) presymplectic 2-form θ: at each x ∈ P , θx is
the bilinear form defined in (8). These forms fit together into a smooth
leafwise 2-form, which is nondegenerate on the leaves just when L is a
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(twisted) Poisson structure. If L is twisted by φ, then θ is twisted by the
pull back of φ to each leaf.

Remark 2.18 (Lie algebroids)
The fact that pr1(L) ⊆ TP is an integrable singular distribution is

a consequence of a more general fact: the restriction of the Courant
bracket [[·, ·]]φ to Γ(L) defines a Lie algebra bracket making L → P into
a Lie algebroid with anchor pr1|L, and the image of the anchor of any Lie
algebroid is always an integrable distribution (its leaves are also called
orbits). We refer to [20, 63] for more on Lie algebroids.

Example 2.19 (Presymplectic leaves of Cartan-Dirac structures)
Let LG be a Cartan-Dirac structure on G with respect to (·, ·)g, see

(15). Then the associated distribution on G is

pr1(LG) = {vr − vl, v ∈ g}.

Since vector fields of the form vr − vl are infinitesimal generators of the
action of G on itself by conjugation, it follows that the twisted presym-
plectic leaves of LG are the connected components of the conjugacy
classes of G. With vG = vr − vl, the corresponding twisted presymplec-
tic forms can be written as

θg(vG, wG) :=
1
2
((Adg−1 −Adg)v, w)g, (18)

at g ∈ G. These 2-forms were introduced in [44] in the study of the
symplectic structure of certain moduli spaces. They are analogous to the
Kostant-Kirillov-Souriau symplectic forms on coadjoint orbits, although
they are neither nondegenerate nor closed: θg is degenerate whenever
1 + Adg is not invertible, and, on a conjugacy class ι : O ↪→ G, dθ =
−ι∗φG.

Just as the symplectic forms along coadjoint orbits on the dual of a
Lie algebra are associated with Lie-Poisson structures, the 2-forms (18)
along conjugacy classes of a Lie group are associated with Cartan-Dirac
structures.

For any φ-twisted Dirac structure L, the (topologically) closed family
of subspaces TP ∩L = ker(θ) in TP is called the characteristic distri-
bution of L and is denoted by ker(L). It is always contained in pr1(L).
When ker(L) has constant fibre dimension, it is integrable if and only if

φ(X,Y,Z) = 0 for all X,Y ∈ ker(θ), Z ∈ pr1(L), (19)

at each point of P . In this case, the leaves of the corresponding charac-
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teristic foliation are the null spaces of the presymplectic forms along
the leaves. On each leaf ι : O ↪→ P , the 2-form θ is basic with respect to
the characteristic foliation if and only if

ker(θ) ⊆ ker(ι∗φ) (20)

at all points of O. In this case, forming the leaf space of this foliation
(locally, or globally when the foliation is simple) produces a quotient
manifold bearing a singular foliation by twisted symplectic leaves; it is
in fact a twisted Poisson manifold. In particular, when φ = 0, conditions
(19) and (20) are satisfied, and the quotient is an ordinary Poisson mani-
fold. Thus, Dirac manifolds can be regarded as “pre-Poisson” manifolds,
since, in nice situations, they become Poisson manifolds after they are
divided out by the characteristic foliation.

Functions which are annihilated by all tangent vectors in the charac-
teristic distribution (equivalently, have differentials in the projection of
L to T ∗P ) are called admissible [27]. For admissible f and g, one can
define

{f, g} := θ(Xf ,Xg), (21)

where Xf is any vector field such that (Xf , df) ∈ L. (Note that any two
choices for Xf differ by a characteristic vector, so the bracket (21) is well
defined.) If (20) holds, then the algebra of admissible functions is closed
under this bracket, but it is not in general a Poisson algebra, due to the
presence of φ. In particular, if the characteristic foliation is regular and
simple, the admissible functions are just the functions on the (twisted)
Poisson quotient.

Example 2.20 (Nonintegrable characteristic distributions)
Consider the presymplectic structure x1dx1 ∧ dx2 on R2. Its charac-

teristic distribution consists of the zero subspace at points where x1 
= 0
and the entire tangent space at each point of the x2 axis. Thus, the
points off the axis are integral manifolds, while there are no integral
manifolds through points on the axis. The only admissible functions are
constants.

On the other hand, if a 2-form is not closed, then its kernel may
have constant fibre dimension and still be nonintegrable. For example,
the characteristic distribution of the 2-form x2dx1 ∧ dx4 − dx3 ∧ dx4 on
R4 is spanned by ∂/∂x1 + x2∂/∂x3 and ∂/∂x2. A direct computation
shows that this 2-dimensional distribution does not satisfy the Frobenius
condition, so it is not integrable.
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Example 2.21 (A nonreducible 2-form)
The characteristic foliation of the 2-form (x2

3 + 1)dx1 ∧ dx2 on R3

consists of lines parallel to the x3-axis, so it is simple. However, the
form is not basic with respect to this foliation.

We will say more about presymplectic leaves and quotient Poisson
structures in Section 2.7.

2.6 Poisson maps

Although we shall see later that the following notion of morphism be-
tween Poisson manifolds is not the only one, it is certainly the most
obvious one.

Let (P1,Π1) and (P2,Π2) be Poisson manifolds. A smooth map
ψ : P1 → P2 is a Poisson map3 if ψ∗ : C∞(P2) → C∞(P1) is a
homomorphism of Poisson algebras, i.e.,

{f, g}2 ◦ ψ = {f ◦ ψ, g ◦ ψ}1

for f, g ∈ C∞(P2). One can reformulate this condition in terms of Pois-
son bivectors or hamiltonian vector fields as follows. A map ψ : P1 → P2

is a Poisson map if and only if either of the following two equivalent
conditions hold:

i) ψ∗Π1 = Π2, i.e., Π1 and Π2 are ψ-related.
ii) For all f ∈ C∞(P2), Xf = ψ∗(Xψ∗f ).

It is clear by condition ii) that trajectories of Xψ∗f project to those of
Xf if ψ is a Poisson map. This provides a way to “lift” some paths from
P2 to P1. However, knowing that Xf is complete does not guarantee that
Xψ∗f is complete. In order to assure that there are no “missing points”
on the lifted trajectory on P1, we define a Poisson map ψ : P1 → P2

to be complete if for any f ∈ C∞(P2) such that Xf is complete, then
Xψ∗f is also complete. Alternatively, one can replace the condition of Xf

being complete by Xf (or f itself) having compact support. Note that
there is no notion of completeness (or “missing point”) for a Poisson
manifold by itself, only for a Poisson manifold relative to another.

3 Following Lie [56], when P1 is symplectic, we call ψ a symplectic realization of P2.
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Remark 2.22 (Cotangent paths)
The path lifting alluded to above is best understood in terms of so-

called cotangent paths [40, 91]. A cotangent path on a Poisson man-
ifold P is a path α in T ∗P such that (π ◦ α)′ = Π̃ ◦ α, where π is the
cotangent bundle projection. If ψ : P1 → P2 is a Poisson map, then a
cotangent path α1 on P1 is a horizontal lift of the cotangent path α2

on P2 if α1(t) = ψ∗(α2(t)) for all t. It turns out that a cotangent path
on P2 has at most one horizontal lift for each initial value of π ◦ α1.
Furthermore, the existence of horizontal lifts for all cotangent paths α2

and all initial data consistent with the initial value of α2 is equivalent
to the completeness of the map ψ.

This path lifting property suggests that complete Poisson maps play
the role of “coverings” in Poisson geometry. This idea is borne out by
some of the examples below.

Example 2.23 (Complete functions)
Let us regard R as a Poisson manifold, equipped with the zero Poisson

bracket. (This is the only possible Poisson structure on R.) Then any
map f : P → R is a Poisson map, which is complete if and only if Xf is
a complete vector field.

Observe that the notion of completeness singles out the subset of
C∞(P ) consisting of complete functions, which is preserved under com-
plete Poisson maps.

Exercise
For which Poisson manifolds is the set of complete functions closed

under addition? (Hint: when are all functions complete?)

Example 2.24 (Open subsets of symplectic manifolds)
Let (P,Π) be a symplectic manifold, and let U ⊆ P be an open subset.

Then the inclusion map U ↪→ P is complete if and only if U is closed
(hence a union of connected components). More generally, the image of
a complete Poisson map is a union of symplectic leaves.

Example 2.24 suggests that (connected) symplectic manifolds are
“minimal objects” among Poisson manifolds.

Exercise
The inclusion of every symplectic leaf in a Poisson manifold is a com-

plete Poisson map.
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Exercise
Let P1 be a Poisson manifold, and let P2 be symplectic. Then any

Poisson map ψ : P1 → P2 is a submersion. Furthermore, if P2 is con-
nected and ψ is complete, then ψ is surjective (assuming that P1 is
nonempty).

The previous exercise is the first step in establishing that complete
Poisson maps with symplectic target must be fibrations. In fact, if P1

is symplectic and dim(P1) = dim(P2), then a complete Poisson map
ψ : P1 → P2 is a covering map. In general, a complete Poisson map
ψ : P1 → P2, where P2 is symplectic, is a locally trivial symplectic
fibration with a flat Ehresmann connection: the horizontal lift in TxP1

of a vector X in Tψ(x)P2 is defined as

Π̃1((Txψ)∗Π̃−1
2 (X)).

The horizontal subspaces define a foliation whose leaves are coverings of
P2, and P1 and ψ are completely determined, up to isomorphism, by the
holonomy

π1(P2, x) → Aut(ψ−1(x)),

see [20, Sec. 7.6] for details.

2.7 Dirac maps

To see how to define Dirac maps, we first reformulate the condition for
a map ψ : (P1,Π1) → (P2,Π2) to be Poisson in terms of the bundles
LΠ1 = graph(Π̃1) and LΠ2 = graph(Π̃2). First, note that ψ is a Poisson
map if and only if, at each x ∈ P1,

(Π̃2)ψ(x) = Txψ ◦ (Π̃1)x ◦ (Txψ)∗. (22)

Now, using (22), it is not difficult to check that ψ being a Poisson map
is equivalent to

LΠ2 = {(Tψ(X), β) |X ∈ TP1, β ∈ T ∗P2, (X, (Tψ)∗(β)) ∈ LΠ1}. (23)

Similarly, if (P1, ω1) and (P2, ω2) are presymplectic manifolds, then
a map ψ : P1 → P2 satisfies ψ∗ω2 = ω1 if and only if Lω1 and Lω2 are
related by

Lω1 = {(X, (Tψ)∗(β)) |X ∈ TP1, β ∈ T ∗P2, (Tψ(X), β) ∈ Lω2}. (24)
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Since Dirac structures simultaneously generalize Poisson structures
and presymplectic forms, and conditions (23) and (24) both make sense
for arbitrary Dirac subbundles, we have two possible definitions: If
(P1, L1) and (P2, L2) are (possibly twisted) Dirac manifolds, then a map
ψ : P1 → P2 is a forward Dirac map if

L2 = {(Tψ(X), β) |X ∈ TP1, β ∈ T ∗P2, (X, (Tψ)∗(β)) ∈ L1}, (25)

and a backward Dirac map if

L1 = {(X, (Tψ)∗(β)) |X ∈ TP1, β ∈ T ∗P2, (Tψ(X), β) ∈ L2}. (26)

Regarding vector Dirac structures as odd (in the sense of super geome-
try) analogues of lagrangian subspaces, one can interpret formulas (25)
and (26) via composition of canonical relations [87], see [16].

The expression on the right-hand side of (25) defines at each point
of P1 a way to push a Dirac structure forward, whereas (26) defines a
pull-back operation. For this reason, we often write

L2 = ψ∗L1

when (25) holds, following the notation for ψ-related vector or bivector
fields; similarly, we may write

L1 = ψ∗L2

instead of (26). This should explain the terminology “forward” and
“backward”.

Remark 2.25 (Isotropic and coisotropic subspaces)
The notions of isotropic and coisotropic subspaces, as well as much

of the usual lagrangian/coisotropic calculus [87, 90] can be naturally ex-
tended to Dirac vector spaces . This yields an alternative characteriza-
tion of forward (resp. backward) Dirac maps in terms of their graphs be-
ing coisotropic (resp. isotropic) subspaces of the suitable product Dirac
space [84].

Note that the pointwise pull back ψ∗L2 is always a well-defined family
of maximal isotropic subspaces in the fibres of TP1 ⊕ T ∗P1, though it
may not be continuous, whereas ψ∗L1 may not be well-defined at all.

Exercise
Consider a smooth map f : P1 → P2, and let L2 be a φ-twisted

Dirac structure on P2. Show that if f∗L2 defines a smooth vector bundle,
then its sections are automatically closed under the f∗φ-twisted Courant
bracket on P1 (so that f∗L2 is a f∗φ-twisted Dirac structure).
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If P1 and P2 are symplectic manifolds, then a map ψ : P1 → P2 is
forward Dirac if and only if it is a Poisson map, and backward Dirac if
and only if it pulls back the symplectic form on P2 to the one on P1, in
which case we call it a symplectic map.

The next example shows that forward Dirac maps need not be back-
ward Dirac, and vice versa.

Example 2.26 (Forward vs. backward Dirac maps)
Consider R2 = {(q, p)}, equipped with the symplectic form dq ∧ dp,

and R4 = {(q1, p1, q2, p2)}, with symplectic form dq1 ∧ dp1 + dq2 ∧ dp2.
Then a simple computation shows that the inclusion

R2 ↪→ R4, (q, p) �→ (q, p, 0, 0),

is a symplectic (i.e. backward Dirac) map, but it does not preserve Pois-
son brackets. On the other hand, the projection

R4 → R2, (q1, p1, q2, p2) �→ (q1, p1),

is a Poisson (i.e. forward Dirac) map, but it is not symplectic.

Example 2.27 (Backward Dirac maps and restrictions)
Let (P,L) be a (possibly twisted) Dirac manifold, and let ι : N ↪→

P be a submanifold. Let LN ⊂ TN ⊕ T ∗N be the subbundle defined
pointwise by the restriction of L to N , see (10), and suppose that LN is
smooth, so that it defines a Dirac structure on N . A direct computation
shows that

LN = ι∗L,

hence the inclusion ι is a backward Dirac map.

The next exercise explains when the notions of forward and backward
Dirac maps coincide.

Exercise
Let V1 and V2 be vector spaces, and let f : V1 → V2 be a linear map.

1. Let L be a vector Dirac structure on V1. Then f∗f∗L = L if and only
if ker(f) ⊆ ker(L), where ker(L) = V ∩ L.

2. Let L be a vector Dirac structure on V2. Then f∗f
∗L = L if and only

if f(V1) ⊇ R, where R = pr1(L) ⊆ V2.

It follows that f∗f∗(L) = L for all L if and only if f is injective, and
f∗f

∗(L) = L for all L if and only if f is surjective.
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In particular, the previous exercise shows that if P1 and P2 are sym-
plectic manifolds, then a Poisson map P1 → P2 is symplectic if and
only if it is an immersion, and a symplectic map P1 → P2 is Poisson
if and only if the map is a submersion (compare with Example 2.26).
Thus, the only maps which are both symplectic and Poisson are local
diffeomorphisms.

Using the previous exercise, we find important examples of maps
which are both forward and backward Dirac.

Example 2.28 (Inclusion of presymplectic leaves)
Let (P,L) be a twisted Dirac manifold. Let (O, θ) be a presymplectic

leaf, and let ι : O ↪→ P be the inclusion. We regard O as a Dirac
manifold, with Dirac structure Lθ = graph(θ̃). Then it follows from the
definition of θ that ι is a backward Dirac map. On the other hand, since

Tι(TO) = pr1(L)

at each point, ι∗Lθ = ι∗ι
∗L = L, so ι is also a forward Dirac map.

Note that θ is completely determined by either of the conditions that
the inclusion be forward or backward Dirac.

Example 2.29 (Quotient Poisson structures)
Let (P,L) be a Dirac manifold, and suppose that its characteristic

foliation is regular and simple. According to the discussion in Section
2.5, the leaf space Pred has an induced Poisson structure Πred. Using
the definition of Πred, one can directly show that the natural projection

pr : P −→ Pred

is a forward Dirac map, i.e., pr∗L = graph(Π̃red). But since

ker(Tpr) = ker(L),

the previous exercise implies that pr∗pr∗L = L, so pr is a backward
Dirac map as well.

As in Example 2.28, Πred is uniquely determined by either of the
conditions that pr be backward or forward Dirac.

Example 2.29 has an important particular case, which illustrates the
connection between Dirac geometry and the theory of hamiltonian ac-
tions.

Example 2.30 (Poisson reduction)
Suppose that J : P → g∗ is the momentum map for a hamiltonian
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action of a Lie group G on a Poisson manifold (P,Π). Let µ ∈ g∗ be a
regular value for J , let Q = J−1(µ), and assume that the orbit space

Pred = Q/Gµ

is a smooth manifold such that the projection Q → Pred is a surjective
submersion. Following Examples 2.10 and 2.27, we know that Q has an
induced Dirac structure LQ with respect to which the inclusion Q ↪→ P

is a backward Dirac map.

Exercise
Show that the Gµ-orbits on Q coincide with the characteristic foliation

of LQ.

Thus, by Example 2.29, Pred inherits a Poisson structure Πred for
which the projection Q → Pred is both backward and forward Dirac
(and either one of these conditions defines Πred uniquely).
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Algebraic Morita equivalence

There is another notion of morphism between Poisson manifolds which,
though it does not include all the Poisson maps, is more closely adapted
to the “representation theory” of Poisson manifolds. It is based on an
algebraic idea which we present first. (The impatient reader may skip to
Chapter 4.)

3.1 Ring-theoretic Morita equivalence of algebras

Let A and B be unital algebras over a fixed ground ring k, and let AM

and BM denote the categories of left modules over A and B, respec-
tively. We call A and B Morita equivalent [65] if they have equivalent
categories of left modules, i.e., if there exist functors

F : BM −→ AM and F̃ : AM −→ BM (27)

whose compositions are naturally equivalent to the identity functors:

F ◦ F̃ ∼= IdAM, and F̃ ◦ F ∼= IdBM.

One way to construct such functors between module categories is via
bimodules: if AXB is an (A,B)-bimodule (i.e., X is a k-module which
is a left A-module and a right B-module, and these actions commute),
then we define an associated functor FX : BM → AM by setting, at the
level of objects,

FX(BM) := AXB ⊗B BM (28)

where the A-module structure on FX(BM) is given by

a · (x⊗B m) = (ax)⊗B m.

25
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For a morphism T : BM −→ BM′, we define

FX(T ) : AXB ⊗B BM −→ AXB ⊗B BM′, FX(T )(x⊗B m) = x⊗B T (m).
(29)

This way of producing functors turns out to be very general. In fact,
as we will see in Theorem 3.1, any functor establishing an equivalence
between categories of modules is naturally equivalent to a functor asso-
ciated with a bimodule.

Exercise
Let X and X′ be (A,B)-bimodules. Show that the associated functors

FX and FX′ are naturally equivalent if and only if the bimodules X and
X′ are isomorphic.

It follows from the previous exercise that the functors FX : BM →
AM, associated with an (A,B)-bimodule X, and FY : AM → BM, asso-
ciated with a (B,A)-bimodule Y, are inverses of one another if and only
if

AXB ⊗B BYA
∼= A and BYA ⊗A AXB

∼= B. (30)

The isomorphisms in (30) are bimodule isomorphisms, and A and B are
regarded as (A,A)- and (B,B)-bimodules, respectively, in the natural
way (with respect to left and right multiplications). So Morita equiva-
lence is equivalent to the existence of bimodules satisfying (30).

One can see Morita equivalence as the notion of isomorphism in an
appropriate category. For that, we think of an arbitrary (A,B)-bimodule
as a “generalized morphism” between B and A. Note that, if A q← B is
an ordinary algebra homomorphism, then we can use it to make A into
an (A,B)-bimodule by

a · x · b := axq(b), a ∈ A, x ∈ A, b ∈ B. (31)

Since the tensor product

AXB ⊗B BYC

is an (A, C)-bimodule, we can see it as a “composition” of bimodules.
As this composition is only associative up to isomorphism, we consider
the collection of isomorphism classes of (A,B)-bimodules, denoted by
Bim(A,B). Then ⊗B defines an associative composition

Bim(A,B)× Bim(B, C) → Bim(A, C). (32)

We define the category Alg to be that in which the objects are unital
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k-algebras and the morphisms A ← B are the isomorphism classes of
(A,B)-bimodules, with composition given by (32); the identities are the
algebras themselves seen as bimodules in the usual way. Note that a
bimodule AXB is invertible in Alg if and only if it satisfies (30) for some
bimodule BYA, so the notion of isomorphism in Alg coincides with Morita
equivalence.

This is part of Morita’s theorem [65], see also [4].

Theorem 3.1 Let A and B be unital k-algebras.

1. A functor F : BM → AM is an equivalence of categories if and only
if there exists an invertible (A,B)-bimodule X such that F ∼= FX.

2. A bimodule AXB is invertible if and only if it is finitely generated
and projective as a left A-module and as a right B-module, and A →
EndB(X) and B → EndA(X) are algebra isomorphisms.

Example 3.2 (Matrix algebras)
A unital algebra A is Morita equivalent to the matrix algebra Mn(A),

for any n ≥ 1, through the (Mn(A),A)-bimodule An.

The following is a geometric example.

Example 3.3 (Endomorphism bundles)
Let A = C∞(M) be the algebra of complex-valued functions on a

manifold M . The Serre-Swan theorem asserts that any finitely gener-
ated projective module over C∞(M) can be identified with the space
of smooth sections Γ(E) of a complex vector bundle E → M . In
fact, C∞(M) is Morita equivalent to Γ(End(E)) via the (Γ(End(E)),
C∞(M))-bimodule Γ(E). When E is the trivial bundle Cn ×M → M ,
we recover the Morita equivalence of C∞(M) and Mn(C∞(M)) in Exam-
ple 3.2. The same conclusion holds if A is the algebra of complex-valued
continuous functions on a compact Hausdorff space.

Morita equivalence preserves many algebraic properties besides cate-
gories of representations, including ideal structures, cohomology groups
and deformation theories [4, 39]. Another important Morita invariant
is the center Z(A) of a unital algebra A. If X is an invertible (A,B)-
bimodule then, for each b ∈ Z(B), there is a unique a = a(b) ∈ Z(A)
determined by the condition ax = xb for all x ∈ X. In this way, X defines
an isomorphism

hX : Z(A) ← Z(B), hX(b) = a(b). (33)

The group of automorphisms of an objectA in Alg is called its Picard
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group, denoted by Pic(A). More generally, the invertible morphisms in
Alg form a “large” groupoid, called the Picard groupoid [9], denoted
by Pic. (Here, “large” refers to the fact that the collection of objects in
Pic is not a set, though the collection of morphisms between any two of
them is.) The set of morphisms from B to A are the Morita equivalences;
we denote this set by Pic(A,B). Of course Pic(A,A) = Pic(A). The orbit
of an object A in Pic is its Morita equivalence class, while its isotropy
Pic(A) parametrizes the different ways A can be Morita equivalent to
any other object in its orbit. It is clear from this picture that Picard
groups of Morita equivalent algebras are isomorphic.

Let us investigate the difference between Aut(A), the group of ordi-
nary algebra automorphisms of A, and Pic(A). Since ordinary automor-
phisms of A can be seen as generalized ones, see (31), we obtain a group
homomorphism

j : Aut(A) → Pic(A). (34)

A simple computation shows that ker(j) = InnAut(A), the group of
inner automorphisms of A. So the outer automorphisms OutAut(A) :=
Aut(A)/InnAut(A) sit inside Pic(A).

Exercise
Morita equivalent algebras have isomorphic Picard groups. Do they

always have isomorphic groups of outer automorphisms? (Hint: consider
the direct sum of two matrix algebras of the same or different sizes.)

On the other hand, (33) induces a group homomorphism

h : Pic(A) → Aut(Z(A)), (35)

whose kernel is denoted by SPic(A), the static Picard group of A.

Remark 3.4 If A is commutative, then each invertible bimodule in-
duces an automorphism of A by (33), and SPic(A) consists of those
bimodules “fixing” A, which motivates our terminology. Bimodules in
SPic(A) can also be characterized by having equal left and right mod-
ule structures, and SPic(A) is often referred to in the literature as the
“commutative” Picard group of A.

If A is commutative, then the composition

Aut(A)
j→ Pic(A) h→ Aut(A)

is the identity. As a result, we can write Pic(A) as a semi-direct product,

Pic(A) = Aut(A) � SPic(A). (36)
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The action of Aut(A) on SPic(A) is given by X
q�→ q Xq , where the left

and right A-module structures on q Xq are a · x := q(a)x and x · b :=
xq(b). Although the orbits of commutative algebras in Pic are just their
isomorphism classes in the ordinary sense, (36) illustrates that their
isotropy groups in Pic may be bigger than their ordinary automorphism
groups. The following is a geometric example.

Example 3.5 (Picard groups of algebras of functions)
Let A = C∞(M) be the algebra of smooth complex-valued functions

on a manifold M . Using the Serre-Swan identification of smooth complex
vector bundles over M with projective modules over A, one can check
that SPic(A) coincides with Pic(M), the group of isomorphism classes
of complex line bundles on M , which is isomorphic to H2(M, Z) via the
Chern class map. We then have a purely geometric description of Pic(A)
as

Pic(C∞(M)) = Diff(M) � H2(M, Z), (37)

where the action of Diff(M) on H2(M, Z) is given by pull back. In (37),
we use the identification of algebra automorphisms of A with diffeomor-
phisms of M , see e.g. [67].

3.2 Strong Morita equivalence of C∗-algebras

The notion of Morita equivalence of unital algebras has been adapted
to several other classes of algebras. An example is the notion of strong
Morita equivalence of C∗-algebras, introduced by Rieffel in [73, 74].

A C∗-algebra A is a complex Banach algebra with an involution ∗

such that

‖aa∗‖ = ‖a‖2, a ∈ A.

Important examples are the algebra of complex-valued continuous func-
tions on a locally compact Hausdorff space and B(H), the algebra of
bounded operators on a Hilbert space H.

The relevant category of modules over a C∗-algebra, to be preserved
under strong Morita equivalence, is that of Hilbert spaces on which the
C∗-algebra acts through bounded operators. More precisely, for a given
C∗-algebra A, we consider the category Herm(A) whose objects are pairs
(H, ρ), where H is a Hilbert space and ρ : A → B(H) is a nondegen-
erate ∗-homomorphism of algebras, and morphisms are bounded linear
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intertwiners. (Here “nondegenerate” means that ρ(A)h = 0 implies that
h = 0, which is always satisfied if A is unital and ρ preserves the unit.)

Since we are now dealing with more elaborate modules, it is natural
that a bimodule giving rise to a functor Herm(B) → Herm(A) analogous
to (28) should be equipped with extra structure. If (H, ρ) ∈ Herm(B)
and AXB is an (A,B)-bimodule, the key observation is that if X is itself
equipped with an inner product 〈·, ·〉B with values in B, then the map
AXB ⊗B H× AXB ⊗B H → C uniquely defined by

(x1 ⊗ h1, x2 ⊗ h2) �→ 〈h1, ρ(〈x1, x2〉B)h2〉 (38)

is an inner product on AXB ⊗B H, which we can complete to obtain a
Hilbert space H′. Moreover, the natural A-action on AXB⊗BH gives rise
to a ∗-representation ρ′ : A → B(H′). These are the main ingredients of
Rieffel’s induction of representations [73].

More precisely, let X be a right B-module. Then a B-valued inner
product 〈·, ·〉B on X is a C-sesquilinear pairing X×X → B (linear in the
second argument) such that, for all x1, x2 ∈ X and b ∈ B, we have

〈x1, x2〉B = 〈x2, x1〉∗B, 〈x1, x2b〉B = 〈x1, x2〉Bb,

and

〈x1, x1〉B > 0 if x1 
= 0.

(Inner products on left modules are defined analogously, but linearity is
required in the first argument). One can show that ‖x‖B := ‖〈x, x〉B‖1/2

is a norm in X. A (right) Hilbert B-module is a (right) B-module X
together with a B-valued inner product 〈·, ·〉B so that X is complete with
respect to ‖ · ‖B. Just as for Hilbert spaces, we denote by BB(X) the
algebra of endomorphisms of X possessing an adjoint with respect to
〈·, ·〉B.

Example 3.6 (Hilbert spaces)
If B = C, then Hilbert B-modules are just ordinary Hilbert spaces. In

this case, BC(X) coincides with the algebra of bounded linear operators
on X, see e.g. [72].

Example 3.7 (Hermitian vector bundles)
Suppose B = C(X), the algebra of complex-valued continuous func-

tions on a compact Hausdorff space X. If E → X is a complex vector
bundle equipped with a hermitian metric h, then Γ(E) is a Hilbert B-
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module with respect to the C(X)-valued inner product

〈e, f〉B(x) := hx(e(x), f(x)).

To describe the most general Hilbert modules over C(X), one needs
Hilbert bundles, which recover Example 3.6 when X is a point.

Example 3.8 (C∗-algebras)
Any C∗-algebra B is a Hilbert B-module with respect to the inner

product 〈b1, b2〉B = b∗1b2.

As in the case of unital algebras, one can define, for C∗-algebrasA and
B, a “generalized morphism” A ← B as a right Hilbert B-module X, with
inner product 〈·, ·〉B, together with a nondegenerate ∗-homomorphism
A → BB(X). We “compose” AXB and BYC through a more elaborate
tensor product: we consider the algebraic tensor product AXB ⊗C BYC,
equipped with the semi-positive C-valued inner product uniquely defined
by

(x1 ⊗ y1, x2 ⊗ y2) �→ 〈y1, 〈x1, x2〉By2〉C. (39)

The null space of this inner product coincides with the span of elements
of the form xb ⊗ y − x ⊗ by [51], so (39) induces a positive-definite C-
valued inner product on AXB⊗B BYC. The completion of this space with
respect to ‖ · ‖C yields a “generalized morphism” from C to A denoted
by AXB⊗̂BBYC, called the Rieffel tensor product of AXB and BYC.

An isomorphism between “generalized morphisms” is a bimodule iso-
morphism preserving inner products. Just as ordinary tensor products,
Rieffel tensor products are associative up to natural isomorphisms. So
one can define a category C∗ whose objects are C∗-algebras and whose
morphisms are isomorphism classes of “generalized morphisms”, with
composition given by Rieffel tensor product; the identities are the alge-
bras themselves, regarded as bimodules in the usual way, and with the
inner product of Example 3.8.

Two C∗-algebras are strongly Morita equivalent if they are iso-
morphic in C∗. As in the case of unital algebras, isomorphic C∗-algebras
are necessarily strongly Morita equivalent.

Remark 3.9 (Equivalence bimodules)
The definition of strong Morita equivalence as isomorphism in C∗ coin-

cides with Rieffel’s original definition in terms of equivalence bimodules
(also called imprimitivity bimodules) [73, 74]. In fact, any “generalized
morphism” AXB which is invertible in C∗ can be endowed with an A-



32 3 Algebraic Morita equivalence

valued inner product, compatible with its B-valued inner product in the
appropriate way, making it into an equivalence bimodule, see [53] and
references therein. Conversely, any equivalence bimodule is automati-
cally invertible in C∗.

Example 3.10 (Compact operators)
A Hilbert space H, seen as a bimodule for C and the C∗-algebra K(H)

of compact operators on H, defines a strong Morita equivalence.

Example 3.11 (Endomorphism bundles)
Analogously to Example 3.3, a hermitian vector bundle E → X,

where X is a compact Hausdorff space, defines a strong Morita equiva-
lence between Γ(End(E)) and C(X).

Any “generalized morphism” AXB in C∗ defines a functor

FX : Herm(B) → Herm(A),

similar to (28), but with Rieffel’s tensor product replacing the ordinary
one, i.e., on objects,

FX(H) := AXB⊗̂BH. (40)

Such a functor is called Rieffel induction of representations [73].
It follows that strongly Morita equivalent C∗-algebras have equivalent
categories of representations, although, in this setting, the converse is
not true [74] (see [11] for a different approach where a converse does
hold).

Remark 3.12 (Strong vs. ring-theoretic Morita equivalence)
By regarding unital C∗-algebras simply as unital algebras over C,

one can compare strong and ring-theoretic Morita equivalences. It turns
out that two unital C∗-algebras are strongly Morita equivalent if and
only if they are Morita equivalent as unital C-algebras [6]. However,
the Picard groups associated to each notion are different in general,
see [18]. In terms of Picard groupoids, this means that, over unital C∗-
algebras, the Picard groupoids associated with ring-theoretic and strong
Morita equivalences have the same orbits, but generally different isotropy
groups.

A study of Picard groups associated with strong Morita equivalence,
analogous to the discussion in Section 3.1, can be found in [12].
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3.3 Morita equivalence of deformed algebras

Let (P,Π) be a Poisson manifold and C∞(P ) be its algebra of smooth
complex-valued functions. The general idea of a deformation quanti-
zation of P “in the direction” of Π is that of a family �� of associative
algebra structures on C∞(P ) satisfying the following two conditions:

i.) f �� g = f · g + O(�);
ii.) 1

i� (f �� g − g �� f) −→ {f, g}, when � → 0.

There are several versions of deformation quantization. We will consider

1. Formal deformation quantization [5]: In this case, �� is an asso-
ciative product on C∞(P )[[�]], the space of formal power series with
coefficients in C∞(P ). Here � is a formal parameter, and the “limit”
in ii.) above is defined simply by setting � to 0. A formal deforma-
tion quantization is also called a star product. The contribution
by Cattaneo and Indelicato [23] to this volume contains a thorough
exposition of the theory of star products and its history.

2. Rieffel’s strict deformation quantization [76]: In this setting,
one starts with a dense Poisson subalgebra of C∞(P ), the C∗-algebra
of continuous functions on P vanishing at infinity, and considers fam-
ilies of associative products �� on it, defined along with norms and
involutions such that the completions form a continuous field of C∗-
algebras. The parameter � belongs to a closed subset of R having 0 as
a non-isolated point, and one can make analytical sense of the limit in
ii.) above. Variations of Rieffel’s notion of deformation quantization
are discussed in [52].

Intuitively, one should regard a deformation quantization �� as a path
in the “space of associative algebra structures” on C∞(P ) for which
the Poisson structure Π is the “tangent vector” at � = 0. From this
perspective, a direct relationship between deformation quantization and
Poisson geometry is more likely in the formal case.

A natural question is when two algebras obtained by deformation
quantization are Morita equivalent. In the framework of formal defor-
mation quantization, the first observation is that if two deformation
quantizations (C∞(P1,Π1)[[�]], �1

�
) and (C∞(P2,Π2)[[�]], �2

�
) are Morita

equivalent (as unital algebras over C[[�]]), then the underlying Poisson
manifolds are isomorphic. So we can restrict ourselves to a fixed Poisson
manifold. The following result is proven in [13, 17]:
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Theorem 3.13 Let P be symplectic. If Pic(P ) ∼= H2(P, Z) has no tor-
sion, then it acts freely on the set of equivalence classes of star products
on P , and two star products are Morita equivalent if and only if their
classes lie in the same H2(P, Z)-orbit, up to symplectomorphism.

Recall that two star products �1
�

and �2
�

are equivalent if there exists
a family of differential operators Tr : C∞(P ) → C∞(P ), r = 1, 2 . . ., so
that T = Id +

∑∞
r=1 Tr�r is an algebra isomorphism

(C∞(P )[[�]], �1
�
) ∼−→ (C∞(P )[[�]], �2

�
).

Equivalence classes of star products on a symplectic manifold are
parametrized by elements in

1
i�

[ω] + H2
dR (P )[[�]], (41)

where ω is the symplectic form on P and H2
dR (P ) is the second de Rham

cohomology group of P with complex coefficients [5, 37, 68], called char-
acteristic classes. As shown in [17], the Pic(P )-action of Theorem 3.13
is explicitly given in terms of these classes by

[ω�] �→ [ω�] + 2πic1(L), (42)

where [ω�] is an element in (41) and c1(L) is the image of the Chern
class of the line bundle L in H2

dR (P ).

Remark 3.14 A version of Theorem 3.13 holds for arbitrary Poisson
manifolds (P,Π), see [13, 47]. In this general setting, equivalence classes
of star products are parametrized by classes of formal Poisson bivectors
Π� = Π + �Π1 + · · · (see [49] or the exposition in [23]), and the Pic(P )-
action on them, classifying Morita equivalent deformation quantizations
of P , is via gauge transformations (see Section 4.8).

In the framework of strict deformation quantization and the special
case of tori, a classification result for Morita equivalence was obtained
by Rieffel and Schwarz in [77] (see also [55, 82]). Let us consider Tn =
Rn/Zn equipped with a constant Poisson structure, represented by a
skew-symmetric real matrix Π: if (θ1, . . . , θn) are coordinates on Tn,
then

Πij = {θi, θj}.

Via the Fourier transform, one can identify the algebra C∞(Tn) with
the space S(Zn) of complex-valued functions on Zn with rapid decay
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at infinity. Under this identification, the pointwise product of functions
becomes the convolution on S(Zn),

f̂ ∗ ĝ(n) =
∑

k∈Zn

f̂(n)ĝ(n− k),

f̂ , ĝ ∈ S(Zn). One can now use the matrix Π to “twist” the convolution
and define a new product

f̂ ∗� ĝ(n) =
∑

k∈Zn

f̂(n)ĝ(n− k)e−πi�Π(k,n−k) (43)

on S(Zn), which can be pulled back to a new product in C∞(Tn). Here
� is a real parameter. If we set � = 1, this defines the algebra A∞

Π , which
can be thought of as the “algebra of smooth functions on the quantum
torus Tn

Π”. A suitable completion of A∞
Π defines a C∗-algebra AΠ, which

is then thought of as the “algebra of continuous functions on Tn
Π”. (Note

that, with � = 1, we are no longer really considering a deformation.)

Exercise
Show that 1 is a unit for AΠ. Let uj = e2πiθj . Show that uj ∗1 ūj =

ūj ∗1 uj = 1 and

uj ∗1 uk = e2πiΠj k uk ∗1 uj . (44)

The algebra AΠ can be alternatively described as the universal C∗-
algebra generated by n unitary elements u1, . . . , un subject to the com-
mutation relations (44).

In this context, the question to be addressed is when skew-symmetric
matrices Π and Π′ correspond to Morita equivalent C∗-algebras AΠ and
AΠ′ . Let O(n, n|R) be the group of linear automorphisms of Rn ⊕ Rn∗

preserving the inner product (6). One can identify elements of O(n, n|R)
with matrices

g =
(

A B

C D

)
,

where A,B,C and D are n× n matrices satisfying

AtC + CtA = 0 = BtD + DtB, and AtD + CtB = 1.

The group O(n, n|R) “acts” on the space of all n × n skew-symmetric
matrices by

Π �→ g ·Π := (AΠ + B)(CΠ + D)−1. (45)
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Note that this is not an honest action, since the formula above only
makes sense when (CΠ + D) is invertible.

Let SO(n, n|Z) be the subgroup of O(n, n|R) consisting of matrices
with integer coefficients and determinant 1. The main result of [77], as
improved in [55, 82], is

Theorem 3.15 If Π is a skew-symmetric matrix, g ∈ SO(n, n|Z) and
g ·Π is defined, then AΠ and Ag·Π are strongly Morita equivalent.

Remark 3.16 (Converse results)
The converse of Theorem 3.15 holds for n = 2 [75], but not in general.

In fact, for n = 3, one can find Π and Π′, not in the same SO(n, n|Z)-
orbit, for which AΠ and AΠ′ are isomorphic (hence Morita equivalent)
[77].

On the other hand, for smooth quantum tori, Theorem 3.15 and its
converse hold with respect to a refined notion of Morita equivalence,
called “complete Morita equivalence” [78], in which bimodules carry con-
nections of constant curvature.

For the algebraic Morita equivalence of smooth quantum tori, see [36].

Remark 3.17 (Dirac structures and quantum tori)
In [77], the original version of Theorem 3.15 was proven under an addi-

tional hypothesis. Rieffel and Schwarz consider three types of generators
of SO(n, n|Z), and prove that their action preserves Morita equivalence.
In order to show that AΠ and AgΠ are Morita equivalent for an arbitrary
g ∈ SO(n, n|Z) (for which gΠ is defined), they need to assume that g

can be written as a product of generators gr · · · g1 in such a way that
each of the products gk · · · g1Π is defined. The result in Theorem 3.15,
without this assumption, is conjectured in [77], and it was proven by Li
in [55].

A geometric way to circumvent the difficulties in the Rieffel-Schwarz
proof, in which Dirac structures play a central role, appears in [82]. The
key point is the observation that, even if g · Π is not defined as a skew-
symmetric matrix, it is still a Dirac structure on Tn. The authors develop
a way to quantize constant Dirac structures on Tn by attaching to each
one of them a Morita equivalence class of quantum tori. They extend the
SO(n, n|Z) action to Dirac structures and prove that the Morita equiva-
lence classes of the corresponding quantum tori is unchanged under the
action.
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Geometric Morita equivalence

In this chapter, we introduce a purely geometric notion of Morita equiv-
alence of Poisson manifolds. This notion leads inevitably to the consid-
eration of Morita equivalence of symplectic groupoids, so we will make
a digression into the Morita theory of general Lie groups and groupoids.
We end the chapter with a discussion of gauge equivalence, a geometric
equivalence which is close to Morita equivalence, but is also related to
the algebraic Morita equivalence of star products, as discussed in Section
3.3.

4.1 Representations and tensor product

In order to define Morita equivalence in Poisson geometry, we need no-
tions of “representations” of (or “modules” over) Poisson manifolds as
well as their tensor products.

As we saw in Example 2.24, symplectic manifolds are in some sense
“irreducible” among Poisson manifolds. If one thinks of Poisson man-
ifolds as algebras, then symplectic manifolds could be thought of as
“matrix algebras”. Following this analogy, a representation of a Poisson
manifold P should be a symplectic manifold S together with a Poisson
map J : S → P which is complete. At the level of functions, we have
a “representation” of C∞(P ) by J∗ : C∞(P ) → C∞(S). This notion
of representation is also suggested by the theory of geometric quantiza-
tion, in which symplectic manifolds become “vector spaces” on which
their Poisson algebras “act asymptotically”.

More precisely, we define a left [right] P -module to be a complete
[anti-] symplectic realization J : S → P . Our first example illustrates

37
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how modules over Lie-Poisson manifolds are related to hamiltonian ac-
tions.

Example 4.1 (Modules over g∗ and hamiltonian actions)
Let (S,ΠS) be a symplectic Poisson manifold, g be a Lie algebra, and

suppose that J : S → g∗ is a symplectic realization of g∗. The map

g → X (S), v �→ Π̃S(dJv), (46)

where Jv(x) := 〈J(x), v〉, defines a g-action on S by hamiltonian vec-
tor fields for which J is the momentum map. On the other hand, the
momentum map J : S → g∗ for a hamiltonian g-action on S is a Pois-
son map, so we have a one-to-one correspondence between symplectic
realizations of g∗ and hamiltonian g-manifolds.

A symplectic realization J : S → g∗ is complete if and only if the as-
sociated infinitesimal hamiltonian action is by complete vector fields, in
which case it can be integrated to a hamiltonian G-action, where G is the
connected and simply-connected Lie group having g as its Lie algebra.
So g∗-modules are just the same thing as hamiltonian G-manifolds.

Remark 4.2 (More general modules over g∗)
The one-to-one correspondence in Example 4.1 extends to one be-

tween Poisson maps into g∗ (from any Poisson manifold, not necessarily
symplectic) and hamiltonian g-actions on Poisson manifolds, or, sim-
ilarly, between complete Poisson maps into g∗ and Poisson manifolds
carrying hamiltonian G-actions. This indicates that it may be useful
to regard arbitrary (complete) Poisson maps as modules over Poisson
manifolds; we will say more about this in Remarks 4.18 and 4.24.

We now define a tensor product operation on modules over a Poisson
manifold. Let J : S → P be a right P -module, and let J ′ : S′ → P be
a left P -module. Just as, in algebra, we can think of the tensor product
over A of a left module X and a right module Y as a quotient of their
tensor product over the ground ring k, so in Poisson geometry we can
define the tensor product of S and S′ to be a “symplectic quotient” of
S × S′. Namely, the fibre product

S ×(J,J ′) S′ = {(x, y) ∈ S × S′ | J(x) = J ′(y)} (47)

is the inverse image of the diagonal under the Poisson map (J, J ′) : S ×
S′ → P×P , hence, whenever it is smooth, it is a coisotropic submanifold.
(Here P denotes P equipped with its Poisson structure multiplied by
−1.) Let us assume then, that the fibre product is smooth; this is the
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case, for example, if either J or J ′ is a surjective submersion. Then we
may define the tensor product S ∗ S′ over P to be the quotient of
this fibre product by its characteristic foliation. In general, even if the
fibre product is smooth, S ∗ S′ is still not a smooth manifold, but just
a quotient of a manifold by a foliation. We will have to deal with this
problem later, see Remark 4.40. But when the characteristic foliation is
simple, S ∗ S′ is a symplectic manifold. We may write S ∗P S′ instead
of S ∗ S′ to identify the Poisson manifold over which we are taking the
tensor product.

If one is given two left modules (one could do the same for right
modules, of course), one can apply the tensor product construction by
changing the “handedness” of one of them. Thus, if S and S′ are left P -
modules, then S′ is a right module, and we can form the tensor product
S′ ∗ S. We call this the classical intertwiner space [95, 96] of S and
S′ and denote it by Hom(S, S′). The name and notation come from the
case of modules over an algebra, where the tensor product Y∗ ⊗ X is
naturally isomorphic to the space of module homomorphisms from Y to
X when these modules are “finite dimensional”. When the algebra is a
group algebra, the modules are representations of the group, and the
module homomorphisms are known as intertwining operators.

Example 4.3 (Symplectic reduction)
Let J : S → g∗ be the momentum map for a hamiltonian action of a

connected Lie group G on a symplectic manifold S. Let S′ = Oµ be the
coadjoint orbit through µ ∈ g∗, equipped with the symplectic structure
induced by the Lie-Poisson structure on g∗, and let ι : Oµ ↪→ g∗ be the
inclusion, which is a Poisson map. Then the classical intertwiner space
Hom(S,Oµ) is equal to J−1(Oµ)/G ∼= J−1(µ)/Gµ, i.e., the symplectic
reduction of S at the momentum value µ.

A (P1,P2)-bimodule is a symplectic manifold S and a pair of maps
P1

J1← S
J2→ P2 making S into a left P1-module and a right P2-module

and satisfying the “commuting actions” condition:

{J∗
1 C∞(P1), J∗

2 C∞(P2)} = 0. (48)

(Such geometric bimodules, without the completeness assumption, are
called dual pairs in [88].) An isomorphism of bimodules is a symplec-
tomorphism commuting with the Poisson maps.

Given bimodules P1
J1← S

J2→ P2 and P2
J′
2← S′ J ′

3→ P3, we may form the
tensor product S ∗P2 S′, and it is easily seen that this tensor product,
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whenever it is smooth, becomes a (P1, P3)-bimodule [95, 53]. We think
of this tensor product as the composition of S and S′.

Remark 4.4 (Modules as bimodules and geometric Rieffel induction)
For any left P2-module S′, there is an associated bimodule P2 ←

S′ → pt, where pt is just a point. Given a bimodule P1
J1← S

J2→ P2,
we can form its tensor product with P2 ← S′ → pt to get a (P1,pt)-
bimodule. In this way, the (P1, P2)-bimodule “acts” on P2-modules to
give P1-modules. This is the geometric analogue of the functors (28) and
(40), for unital and C∗-algebras, respectively.

Example 4.5 Following Example 4.3, suppose that the orbit space S/G

is smooth, in which case it is a Poisson manifold in a natural way. Con-
sider the bimodules S/G ← S

J→ g∗ and g∗
ι← Oµ → pt. Their ten-

sor product is the (S/G, pt)-bimodule S/G ← S ∗ Oµ → pt, where
the map on the left is the inclusion of the symplectic reduced space
S ∗ Oµ = Hom(S,O) as a symplectic leaf of S/G.

Following the analogy with algebras, it is natural to think of isomor-
phism classes of bimodules as generalized morphisms of Poisson man-
ifolds. The extra technical difficulty in this geometric context is that
tensor products do not always result in smooth spaces. So one needs a
suitable notion of “regular bimodules”, satisfying extra regularity con-
ditions to guarantee that their tensor products are smooth and again
“regular”, see [19, 53], or an appropriate notion of bimodule modeled on
“singular” spaces. We will come back to these topics in Section 4.7.

4.2 Symplectic groupoids

In order to regard geometric bimodules over Poisson manifolds as mor-
phisms in a category, one needs to identify the bimodules which serve
as identities, i.e., those satisfying

S ∗ S′ ∼= S′ and S′′ ∗ S ∼= S′′

for any other bimodules S′ and S′′. As we saw in Section 3.1, in the case
of unital algebras, the identity bimodule of an object A in Alg is just A
itself, regarded as an (A,A)-bimodule in the usual way. This idea cannot
work for Poisson manifolds, since they are generally not symplectic, and
because we do not have commuting left and right actions of P on itself.
Instead, it is the symplectic groupoids [89] which serve as such “identity
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bimodules” for Poisson manifolds, see [53]. If P
t← G s→ P is an identity

bimodule for a Poisson manifold P , then there exists, in particular, a
symplectomorphism G ∗ G → G, and the composition

G ×(s,t) G → G ∗ G ∼→ G

defines a map m : G ×(s,t) G → G which turns out to be a groupoid
multiplication1, compatible with the symplectic form on G in the sense
that graph(m) ⊆ G×G×G is a lagrangian submanifold. If pi : G×(s,t)G →
G, i = 1, 2, are the natural projections, then the compatibility between
m and ω is equivalent to the condition

m∗ω = p∗1ω + p∗2ω. (49)

A 2-form ω satisfying (49) is called multiplicative (note that if ω were
a function, (49) would mean that ω(gh) = ω(g)+ω(h)), and a groupoid
equipped with a multiplicative symplectic form is called a symplectic
groupoid.

If (G, ω) is a symplectic groupoid over a manifold P , then the following
important properties follow from the compatibility condition (49), see
[26]:

i) The unit section P ↪→ G is lagrangian;
ii) The inversion map G → G is an anti-symplectic involution;
iii) The fibres of the target and source maps, t, s : G → P , are the
symplectic orthogonal of one another;

iv) At each point of G, ker(Ts) = {Xt∗f | f ∈ C∞(P )} and ker(Tt) =
{Xs∗f | f ∈ C∞(P )};

v) P carries a unique Poisson structure such that the target map t is
a Poisson map (and the source map s is anti-Poisson).

A Poisson manifold (P,Π) is called integrable if there exists a sym-
plectic groupoid (G, ω) over P which induces Π in the sense of v), and
we refer to G as an integration of P . As we will discuss later, not ev-
ery Poisson manifold is integrable is this sense, see [30, 89]. But if P is
integrable, then there exists a symplectic groupoid integrating it which

1 For expositions on groupoids, we refer to [20, 63, 64]; we adopt the convention
that, on a Lie groupoid G over P , with source s and target t, the multiplication is
defined on {(g, h) ∈ G × G, s(g) = t(h)}, and we identify the Lie algebroid A(G)
with ker(Ts)|P , and Tt is the anchor map. The bracket on the Lie algebroid
comes from identification with right-invariant vector fields, which is counter to a
convention often used for Lie groups.
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has simply-connected (i.e., connected with trivial fundamental group)
source fibres [58], and this groupoid is unique up to isomorphism.

Remark 4.6 (Integrability and complete symplectic realizations)
If (G, ω) is an integration of (P,Π), then the target map t : G → P

is a Poisson submersion which is always complete. On the other hand,
as proven in [30], if a Poisson manifold P admits a complete symplectic
realization S → P which is a submersion, then P must be integrable.

Remark 4.7 (The Lie algebroid of a Poisson manifold)
All the integrations of a Poisson manifold (P,Π) have (up to natural

isomorphism) the same Lie algebroid. It is T ∗P , with a Lie algebroid
structure with anchor Π̃ : T ∗P → TP , and Lie bracket on Γ(T ∗P ) =
Ω1(P ) defined by

[α, β] := LΠ̃(α)(β)− LΠ̃(β)(α)− dΠ(α, β). (50)

Note that (50) is uniquely characterized by [df, dg] = d{f, g} and the
Leibniz identity. Following Remark 2.18, we know that LΠ = graph(Π̃)
also carries a Lie algebroid structure, induced by the Courant bracket.
The natural projection pr2 : TP ⊕ T ∗P → T ∗P restricts to a vector
bundle isomorphism LΠ → T ∗P which defines an isomorphism of Lie
algebroids.

On the other hand, if (G, ω) is a symplectic groupoid integrating
(P,Π), then the bundle isomorphism

ker(Ts)|P −→ T ∗P, ξ �→ iξω|TP (51)

induces an isomorphism of Lie algebroids A(G) ∼→ T ∗P , where A(G) is
the Lie algebroid of G, so the symplectic groupoid G integrates T ∗P in
the sense of Lie algebroids. It follows from (51) that dim(G) = 2 dim(P ).

In the work of Cattaneo and Felder [22], symplectic groupoids arise
as reduced phase spaces of Poisson sigma models. This means that one
begins with the space of paths on T ∗P , which has a natural symplectic
structure, restricts to a certain submanifold of “admissible” paths, and
forms the symplectic groupoid G(P ) as a quotient of this submanifold
by a foliation. This can also be described as an infinite-dimensional sym-
plectic reduction. The resulting space is a groupoid but may not be a
manifold. When it is a manifold, it is the source-simply-connected sym-
plectic groupoid of P . When G(P ) is not a manifold, as the leaf space
of a foliation, it can be considered as a differentiable stack, and even
as a symplectic stack. In the world of stacks [60], it is again a smooth
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groupoid; we will call it an S-groupoid. The first steps of this program
have been carried out by Tseng and Zhu [83]. (See [93] for an exposition,
as well as Remark 4.40 below.)

This construction of symplectic groupoids has been extended to gen-
eral Lie algebroids, see [29, 79]. Crainic and Fernandes [29] describe
explicitly the obstructions to the integrability of Lie algebroids and, in
[30], identify these obstructions for the case of Poisson manifolds and
symplectic groupoids. Integration by S-groupoids is done in [83].

The next three examples illustrate simple yet important classes of
integrable Poisson manifolds and their symplectic groupoids.

Example 4.8 (Symplectic manifolds)
If (P, ω) is a symplectic manifold, then the pair groupoid P × P

equipped with the symplectic form ω × (−ω) is a symplectic groupoid
integrating P . In order to obtain a source-simply-connected integration,
one should consider the fundamental groupoid π(P ), with symplectic
structure given by the pull-back of the symplectic form on P ×P by the
covering map π(P ) → P × P .

Example 4.9 (Zero Poisson structures)
If (P,Π) is a Poisson manifold with Π = 0, then G(P ) = T ∗P . In this

case, the source and target maps coincide with the projection T ∗P → P ,
and the multiplication on T ∗P is given by fibrewise addition. There are,
however, other symplectic groupoids integrating P , which may not have
connected or simply-connected source fibres. For example, if T ∗P admits
a basis of closed 1-forms, we may divide the fibres of T ∗P by the lattice
generated by these forms to obtain a groupoid whose source and target
fibres are tori. Or, if P is just a point, any discrete group is a symplectic
groupoid for P . We refer to [19] for more details.

Example 4.10 (Lie-Poisson structures)
Let P = g∗ be the dual of a Lie algebra g, equipped with its Lie-

Poisson structure, and let G be a Lie group with Lie algebra g. The
transformation groupoid G � g∗ with respect to the coadjoint action,
equipped with the symplectic form obtained from the identification G×
g∗ ∼= T ∗G by right translation, is a symplectic groupoid integrating g∗.
This symplectic groupoid is source-simply-connected just when G is a
(connected) simply-connected Lie group.

Remark 4.11 (Lie’s third theorem)
Let g be a Lie algebra. Example 4.10 shows that integrating g, in

the usual sense of finding a Lie group G with Lie algebra g, yields an
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integration of the Lie-Poisson structure of g∗. On the other hand, one
can use the integration of the Lie-Poisson structure of g∗ to construct a
Lie group integrating g. Indeed, if G is a symplectic groupoid integrating
g∗, then the map

g → X (G), v �→ Xt∗v

is a faithful representation of g by vector fields on G. Here t : G → g∗

is the target map, and we regard v ∈ g as a linear function on g∗. We
then use the flows of these vector fields to define a (local) Lie group
integrating g. If we fix x ∈ G, the “identity” of the local Lie group, so
that t(x) = 0, then the Lie group sits in G as a lagrangian subgroupoid.
So the two “integrations” are the same.

The idea of using a symplectic realization of g∗ to find a Lie group
integrating g goes back to Lie’s original proof of “Lie’s third theo-
rem.” A regular point of g∗ has a neighborhood U with coordinates
(q1, . . . , qk, p1, . . . , pk, e1, . . . , el) such that the Lie-Poisson structure can
be written as

k∑
i=1

∂

∂qi
∧ ∂

∂pi

(see Section 2.4). The map g → X (U), v �→ Xv is a Lie algebra ho-
momorphism, but not faithful in general. It suffices, though, to add l

new coordinates (f1, . . . , fl) and consider the local symplectic realiza-
tion U × Rl → U , with symplectic Poisson structure

Π′ =
k∑

i=1

∂

∂qi
∧ ∂

∂pi
+

l∑
i=1

∂

∂ei
∧ ∂

∂fi
.

The map g → X (U ×Rl), v �→ X ′
v := Π̃′(v), is now a faithful Lie algebra

homomorphism. Once again, we can use the flows of the hamiltonian
vector fields of the coordinates on g to construct a local Lie group.

More generally, if G is a Lie groupoid and A is its Lie algebroid, then
T ∗G is naturally a symplectic groupoid over A∗, see [26]. The induced
Poisson structure on A∗ is a generalization of a Lie-Poisson structure.
Conversely, if A is an integrable Lie algebroid, then G(A), its source-
simply-connected integration, can be constructed as a lagrangian sub-
groupoid of the symplectic groupoid G(A∗) integrating A∗ [21].

The following is an example of a non-integrable Poisson structure.
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Example 4.12 (Nonintegrable Poisson structure)
Let P = S2 × R. Let ΠS2 be the natural symplectic structure on

S2. Then the product Poisson structure on P , ΠS2 × {0} is integrable.
But if we multiply this Poisson structure by (1 + t2), t ∈ R (or use any
other nonconstant function which has a critical point), then the resulting
Poisson structure (1 + t2)(ΠS2 × {0}) is not integrable [30, 89]. In this
case the symplectic S-groupoid G(P ) is not a manifold.

We will have more to say about this example in Section 4.7.

Remark 4.13 (Twisted presymplectic groupoids)
Let G be a Lie groupoid over a manifold P . For each k > 0, let Gk be

the manifold of composable sequences of k-arrows,

Gk := G ×(s,t) G ×(s,t) · · · ×(s,t) G, (k times)

and set G0 = P . The sequence of manifolds Gk, together with the natural
maps ∂i : Gk → Gk−1, i = 0, . . . , k,

∂i(g1, . . . , gk) =


(g2, . . . , gk), if i = 0,

(g1, . . . , gigi+1, . . . , gk), if 0 < i < k

(g1, . . . , gk−1) if i = k.

defines a simplicial manifold G•. The bar-de Rham complex of G is
the total complex of the double complex Ω•(G•), where the boundary
maps are d : Ωq(Gk) → Ωq+1(Gk), the usual de Rham differential, and
∂ : Ωq(Gk) → Ωq(Gk+1), the alternating sum of the pull-back of the k+1
maps Gk → Gk+1, as in group cohomology. For example, if ω ∈ Ω2(G),
then

∂ω = p∗1ω −m∗ω + p∗2ω.

(As before, m is the groupoid multiplication, and pi : G2 → G, i = 1, 2,
are the natural projections.) It follows that a 2-form ω is a 3-cocycle
in the total complex if and only if it is multiplicative and closed; in
particular, a symplectic groupoid can be defined as a Lie groupoid G
together with a nondegenerate 2-form ω which is a 3-cocycle.

More generally, one can consider 3-cochains which are sums ω + φ,
where ω ∈ Ω2(G) and φ ∈ Ω3(P ). In this case, the coboundary condition
is that dφ = 0, ω is multiplicative, and

dω = s∗φ− t∗φ.

A groupoid G together with a 3-cocycle ω+φ such that ω is nondegener-
ate is called a φ-twisted symplectic groupoid [80]. Just as symplec-
tic groupoids are the global objects associated with Poisson manifolds,
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the twisted symplectic groupoids are the global objects associated with
twisted Poisson manifolds [24].

Without non-degeneracy assumptions on ω, one has the following re-
sult concerning the infinitesimal version of 3-cocycles [15]: If G is source-
simply connected and φ ∈ Ω3(P ), dφ = 0, then there is a one-to-one
correspondence between 3-cocycles ω+φ and bundle maps σ : A → T ∗P

satisfying the following two conditions:

〈σ(ξ), ρ(ξ′)〉 = −〈σ(ξ′), ρ(ξ)〉; (52)

σ([ξ, ξ′]) = Lξ(σ(ξ′))− Lξ′(σ(ξ))

+ d〈σ(ξ), ρ(ξ′)〉+ iρ(ξ)∧ρ(ξ′)(φ), (53)

where A is the Lie algebroid of G, [·, ·] is the bracket on Γ(A), ρ : A → TP

is the anchor, and ξ, ξ′ ∈ Γ(A). For one direction of this correspondence,
given ω, the associated bundle map σω : A → T ∗P is just σω(ξ) = iξω|P .

For a given σ : A → T ∗P satisfying (52), (53), let us consider the
bundle map

(ρ, σ) : A → TP ⊕ T ∗P. (54)

A direct computation shows that if the rank of Lσ := Image(ρ, σ) equals
dim(P ), then Lσ ⊂ TP⊕T ∗P is a φ-twisted Dirac structure on P . In this
case, it is easy to check that (54) yields a (Lie algebroid) isomorphism
A → Lσ if and only if

1) dim(G) = 2 dim(P );
2) ker(ωx) ∩ ker(Txs) ∩ ker(Txt) = {0} for all x ∈ P .

A groupoid G over P satisfying 1) together with a 3-cocycle ω+φ so that
ω satisfies 2) is called a φ-twisted presymplectic groupoid [15, 97].
As indicated by the previous discussion, they are precisely the global
objects integrating twisted Dirac structures. The 2-form ω is nondegen-
erate if and only if the associated Dirac structure is Poisson, recover-
ing the known correspondence between (twisted) Poisson structures and
(twisted) symplectic groupoids.

The following example describes presymplectic groupoids integrating
Cartan-Dirac structures; it is analogous to Example 4.10.

Example 4.14 (Cartan-Dirac structures and the AMM-groupoid)
Let G be a Lie group with Lie algebra g, equipped with a nonde-

generate bi-invariant quadratic form (·, ·)g. The AMM groupoid [8] is
the action groupoid G = G � G with respect to the conjugation action,
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together with the 2-form [3]

ω(g,x) =
1
2
(
(Adxp∗gλ, p∗gλ)g + (p∗gλ, p∗x(λ + λ̄))g

)
,

where pg and px denote the projections onto the first and second compo-
nents of G×G, and λ and λ are the left and right Maurer-Cartan forms.
The AMM-groupoid is a φG-twisted presymplectic groupoid integrating
LG [15], the Cartan-Dirac structure on G defined in Example 2.13. If G

is simply connected, then (G�G,ω) is isomorphic to G(LG), the source-
simply connected integration of LG; in general, one must pull-back ω to
G̃ � G, where G̃ is the universal cover of G.

4.3 Morita equivalence for groups and groupoids

Since groupoids play such an important role in the Morita equivalence of
Poisson manifolds, we will take some time to discuss Morita equivalence
of groupoids in general. We begin with groups.

If we try to define Morita equivalence of groups as equivalence between
their (complex linear) representation categories, then we are back to
algebra, since representations of a group are the same as modules over
its group algebra over C. (This is straightforward for discrete groups,
and more elaborate for topological groups.) Here, we just remark that
nonisomorphic groups can have isomorphic group algebras (e.g. two finite
abelian groups with the same number of elements), or more generally
Morita equivalent group algebras (e.g. two finite groups with the same
number of conjugacy classes, hence the same number of isomorphism
classes of irreducible representations).

We obtain a more geometric notion of Morita equivalence for groups
by considering actions on manifolds rather than on linear spaces. Thus,
for Lie groups (including discrete groups) G and H, bimodules are
(G,H)-“bispaces”, i.e. manifolds where G acts on the left, H acts on
the right, and the actions commute. The “tensor product” of such bi-
modules is defined by the orbit space

G XH ∗ H YK := X×Y/H,

where H acts on X × Y by (x, y) �→ (xh, h−1y). The result of this op-
eration may no longer be smooth, even if X and Y are. Under suitable
regularity assumptions, to be explained below, the tensor product is a
smooth manifold, so we consider the category in which objects are groups
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and morphisms are isomorphism classes of “regular” bispaces, and we
define Morita equivalence of groups as isomorphism in this category.
Note that the identity morphisms are the groups themselves seen as bis-
paces with respect to left and right multiplication. Analogously to the
case of algebras, we have an associated notion of Picard group(oid).

Exercise
Show that a bispace G XH is invertible with respect to the tensor prod-

uct operation if and only if the G and H-actions are free and transitive.

If G XH is invertible and we fix a point x0 ∈ X, by the result of the
previous exercise, there exists for each g ∈ G a unique h ∈ H such that
gx0h

−1 = x0. The correspondence g �→ h in fact establishes a group
isomorphism G → H. So, for groups, Morita equivalence induces the
same equivalence relation as the usual notion of isomorphism. As we
will see in Example 4.32 of Section 4.6, the situation for Picard groups
resembles somewhat that for algebras, where outer automorphisms play
a key role.

For a full discussion of Morita equivalence of Lie groupoids, we refer
to the article of Moerdijk and Mrčun [64] in this volume. Here, we will
briefly summarize the theory.

An action (from the left) of a Lie groupoid G over P on a manifold
S consists of a map J : S → P and a map G ×(s,J) S → S (where s is
the source map of G) satisfying axioms analogous to those of a group
action; J is sometimes called the moment of the action (see Example
4.16). The action is principal with respect to a map p : S → M if p

is a surjective submersion and if G acts freely and transitively on each
p-fibre; principal G-bundles are also called G-torsors.

Right actions and torsors are defined in the obvious analogous way. If
groupoids G1 and G2 act on S from the left and right, respectively, and
the actions commute, then we call S a (G1,G2)-bibundle. A bibundle is
left principal when the left G1-action is principal with respect to the
moment map for the right action of G2.

If S is a (G1,G2)-bibundle with moments P1
J1← S

J2→ P2, and if S′

is a (G2,G3)-bibundle with moments P2
J′
2← S′ J ′

3→ P3, then their “tensor
product” is the orbit space

S ∗ S′ := (S ×(J2,J ′
2)

S′)/G2, (55)

where G2 acts on S×(J2,J′
2)

S′ diagonally. The assumption that S and S′
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are left principal guarantees that S ∗ S′ is a smooth manifold and that
its natural (G1,G3)-bibundle structure is left principal.

Two (G1,G2)-bibundles are isomorphic if there is a diffeomorphism
between them commuting with the groupoid actions and their moments.
The “tensor product” (55) is associative up to natural isomorphism, so
we may define a category LG in which the objects are Lie groupoids and
morphisms are isomorphism classes of left principal bibundles. Just as
in the case of algebras, we call two Lie groupoids Morita equivalent
if they are isomorphic as objects in LG, and we define the associated
notion of Picard group(oid) just as we do for algebras. We note that a
(G1,G2)-bibundle S is “invertible” in LG if and only if it is biprincipal,
i.e., principal with respect to both left and right actions; a biprincipal
bibundle is also called a Morita equivalence or a Morita bibundle.

Example 4.15 (Transitive Lie groupoids)
Let G be a Lie groupoid over P . For a fixed x ∈ P , let Gx be the

isotropy group of G at x, and let Ex = s−1(x). Then Ex is a (G,Gx)-
bibundle. It is a Morita bibundle if and only if G is transitive, i.e., for
any x, y ∈ P , there exists g ∈ G so that s(g) = y and t(g) = x. In fact,
a Lie groupoid is transitive if and only if it is Morita equivalent to a Lie
group.

4.4 Modules over Poisson manifolds and
symplectic groupoid actions

Example 4.1 shows that modules over g∗ are the same thing as hamilto-
nian G-manifolds, where G is the connected and simply connected Lie
group with Lie algebra g. As we discuss in this section, this is a partic-
ular case of a much more general correspondence between modules over
Poisson manifolds and symplectic groupoid actions.

Let (G, ω) be a symplectic groupoid over P acting on a symplectic
manifold (S, ωS) with moment J . Let a : G ×(s,J) S → S denote the ac-
tion. We call the action symplectic if it satisfies the property (analogous
to the condition on multiplicative forms) that graph(a) ⊂ G(P )× S × S

is lagrangian. Equivalently, a is symplectic if

a∗ωS = p∗S ωS + p∗Gω, (56)

where pS : G ×(s,J) S → S and pG : G ×(s,J) S → G are the natural
projections.
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A key observation relating actions of symplectic groupoids to modules
over Poisson manifolds is that if J : S → P is the moment map for a
symplectic action of a symplectic groupoid G over P , then J is automat-
ically a complete Poisson map [61], defining a module over P . On the
other hand, a module J : S → P over an integrable Poisson manifold P

automatically carries a symplectic action of the source-simply connected
symplectic groupoid G(P ). So there is a one-to-one correspondence be-
tween P -modules and symplectic actions of G(P ) [26].

Example 4.16 (Hamiltonian spaces)
Let G be a simply-connected Lie group with Lie algebra g. Any com-

plete symplectic realization J : S → g∗ induces an action of the sym-
plectic groupoid T ∗G on S:

T ∗G

�� ��

S

J
����

��
��

��

g∗

In this case, T ∗G = G � g∗ is a transformation Lie groupoid, and, as
such, its action is equivalent to an ordinary G-action on S for which J is
G-equivariant. Moreover, the G-action corresponding to the symplectic
T ∗G-action induced by J : S → P is a hamiltonian G-action for which
J is a momentum map. So we recover the result of Example 4.1 on the
isomorphism (not only equivalence) between the categories of complete
symplectic realizations of g∗ and hamiltonian G-manifolds. Notice that
the momentum map for the group action is the moment map for the
groupoid action; it is this example which motivates the term “moment”
as applied to groupoid actions.

Remark 4.17 (Infinitesimal actions)
The relationship between complete symplectic realizations and sym-

plectic groupoid actions has an infinitesimal counterpart. A symplectic
realization (not necessarily complete) J : S → P induces a Lie algebra
homomorphism

Ω1(P ) → X (S), α �→ Π̃S(J∗α), (57)

where the bracket on 1-forms is the one of (50). This maps defines a Lie
algebroid action of the Lie algebroid of P , T ∗P , on S. The completeness
of J allows this infinitesimal action to be integrated to an action of
the source-simply-connected integration G(P ) (see [62]), and this action
turns out to be symplectic.
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Remark 4.18 (Symplectic groupoid actions on Poisson manifolds)
As in Remark 4.2, the correspondence between P -modules and sym-

plectic G(P )-actions holds in more generality: a Poisson map Q → P

from any Poisson manifold Q induces an infinitesimal T ∗P -action on
Q, by the same formula as in (57). When the Poisson map is complete
(and P is integrable), it gives rise to an action of G(P ) on Q, which
preserves the symplectic leaves of Q; its restriction to each leaf is a sym-
plectic action. The action is a Poisson action in the sense that its graph
is lagrangian [90] in the appropriate product, see [14] for details.

Remark 4.19 (Realizations of Dirac structures and presymplectic
groupoid actions)

The correspondence between modules over a Poisson manifold P and
symplectic actions of G(P ) extends to one between “modules” over Dirac
manifolds and suitable actions of presymplectic groupoids [14, 15].

In order to introduce the notion of “realization” of a Dirac manifold,
let us note that, if (P,Π) is a Poisson manifold, then the infinitesimal
T ∗P -action (57) induced by a Poisson map J : Q → P can be equiva-
lently expressed in terms of LΠ by the Lie algebra homomorphism

Γ(LΠ) → X (Q), (X,α) �→ Y,

where Y is uniquely determined by the condition (Y, J∗α) ∈ LΠQ . Since
J is a Poisson map, it also follows that X = TJ(Y ).

If (P,L) and (Q,LQ) are Dirac manifolds, and J : Q → P is a forward
Dirac map, then (25) implies that for each (X,α) ∈ L over the point
J(y) ∈ P , there exists Y ∈ TyQ such that (Y, TJ∗(α)) ∈ (LQ)y and
X = TyJ(Y ). However, unlike the situation of Poisson maps, Y is not
uniquely determined by these conditions; this is the case if and only if

ker(TJ) ∩ ker(LQ) = {0}. (58)

If (58) holds at all points of Q, then the induced map Γ(L) → X (Q),
(X,α) �→ Y , defines an infinitesimal L-action on Q.

A Dirac realization [14] of a φ-twisted Dirac manifold (P,L) is a
forward Dirac map J : Q → P , where Q is a J∗φ-twisted Dirac manifold
and (58) is satisfied. If Q is a J∗φ-twisted presymplectic manifold, then
J is called a presymplectic realization. We call a Dirac realization
complete if the induced infinitesimal action is complete (in the sense of
Lie algebroid actions, see [62]). As in the case of Poisson maps, complete
Dirac realizations J : Q → P are the same thing as global actions of the
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presymplectic groupoid G(L) on Q “compatible” with LQ in a suitable
way [14] (generalizing the conditions in (56) and Remark 4.18).

The next example illustrates the discussion in Remark 4.19 and the
connection between Dirac geometry and group-valued momentum maps
[3, 2].

Example 4.20 (Modules over Cartan-Dirac structures and quasi-ham-
iltonian actions)

As we saw in Example 4.1, symplectic realizations of (resp. Poisson
maps into) the Lie-Poisson structure on g∗ are the same thing as hamil-
tonian g-actions on symplectic (resp. Poisson) manifolds; if the maps are
complete, one gets a correspondence with global hamiltonian actions.

Analogously, let us consider a connected, simply-connected Lie group
G equipped with LG, the Cartan-Dirac structure associated with a non-
degenerate bi-invariant quadratic form (·, ·)g. Then presymplectic real-
izations into G are exactly the same as quasi-hamiltonian g-manifolds,
and complete realizations correspond to global quasi-hamiltonian G-
actions (which can be seen as actions of the AMM-groupoid of Exam-
ple 4.14, analogously to Example 4.16) [15]. More generally, (complete)
Dirac realizations of (G,LG) correspond to (global) hamiltonian quasi-
Poison manifolds [14], in analogy with Remark 4.18.

In these examples, the realization maps are the group-valued momen-
tum maps.

4.5 Morita equivalence of Poisson manifolds and
symplectic groupoids

We now have all the ingredients which we need in order to define a geo-
metric notion of Morita equivalence for Poisson manifolds which implies
equivalence of their module categories.

A Morita equivalence between Poisson manifolds P1 and P2 is a
(P1, P2)-bimodule P1

J1← S
J2→ P2 such that J1 and J2 are surjective

submersions whose fibres are simply connected and symplectic orthog-
onals of each other. By Remark 4.6, Morita equivalence only applies to
integrable Poisson structures. (The nonintegrable case can be handled
with the use of symplectic S-groupoids. See Remark 4.40.) The bimodule
P2

J2← S
J1→ P1, where S has the opposite symplectic structure, is also a
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Morita equivalence, and S and S satisfy

S ∗P2 S ∼= G(P1), and S ∗P1 S ∼= G(P2). (59)

Since symplectic groupoids are “identity bimodules”, (59) is analogous
to the invertibility of algebraic bimodules (30).

Let us consider the category whose objects are complete symplectic
realizations of an integrable Poisson manifold P , and morphisms are
symplectic maps between symplectic realizations commuting with the
realization maps. This category is analogous to the category of left mod-
ules over an algebra, and we call it the category of modules over P . If
P1

J1← S
J2→ P2 is a Morita equivalence, then the regularity conditions on

the maps J1 and J2 guarantee that if S′ → P2 is a left P2-module then
the tensor product S ∗P2 S′ is smooth and defines a left P1-module [95].
So one can define a functor between categories of modules (i.e. complete
symplectic realizations) just as one does for algebras, see (28) and (29),
and prove that geometric Morita equivalence implies the equivalence of
“representation” categories [53, 95]:

Theorem 4.21 If P1 and P2 are Morita equivalent, then they have
equivalent categories of complete symplectic realizations.

Remark 4.22 (The “category” of complete symplectic realizations)
In the spirit of the symplectic “category” of [87], one can also define a

larger “category” of complete symplectic realizations of P by consider-
ing the morphisms between two P -modules J : S → P and J ′ : S′ → P

to be lagrangian submanifolds in S′×(J ′,J) S, see [94, 95], with composi-
tion given by composition of relations; the quotes in “category” are due
to the fact that the composition of two such morphisms yields another
morphism only under suitable transversality assumptions. Theorem 4.21
still holds in this more general setting [94]. Unlike in the case of alge-
bras, though, the converse of Theorem 4.21 does not hold in general
[95], see Remark 4.37. We will discuss ways to remedy this problem in
Chapter 5 by introducing yet another category of representations of P

(a “symplectic category”).

Remark 4.23 (Classical intertwiner spaces)
As a consequence of (59), one can see that Morita equivalence, in

addition to establishing an equivalence of module categories, preserves
the classical intertwiner spaces.

Remark 4.24 (More general modules)
As indicated in Remarks 4.2 and 4.18, from the point of view of hamil-
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tonian actions, it is natural to consider arbitrary complete Poisson maps
(not necessarily symplectic realizations) as modules over Poisson mani-
folds. The “action” of (P1, P2)-bimodules on P2-modules in Remark 4.4
naturally extends to an action on Poisson maps Q → P2; in fact, one
can think of this more general tensor product as a leafwise version of
the one in Section 4.1, and Theorem 4.21 still holds for these more gen-
eral “representations”. (This generalization is the analogue, in algebra,
of considering homomorphisms of an algebra into direct sums of endo-
morphism algebras, rather than usual modules.)

The notion of Morita equivalence of Poisson manifolds is closely re-
lated to Morita equivalence of symplectic groupoids, which is a refine-
ment of the notion of Morita equivalence for Lie groupoids, taking sym-
plectic structures into account. If G1 and G2 are symplectic groupoids,
then a (G1,G2)-bibundle is called symplectic if both actions are sym-
plectic. The “tensor product” of two symplectic bibundles, as defined in
Section 4.3, is canonically symplectic, so we may define a category SG in
which the objects are symplectic groupoids and morphisms are isomor-
phism classes of left principal symplectic bibundles. (An isomorphism be-
tween symplectic bibundles is required to preserve the symplectic forms.)
We call two symplectic groupoids G1 and G2 Morita equivalent [95]
if they are isomorphic in SG, i.e. if there exists a biprincipal symplectic
(G1,G2)-bibundle (see [53]). A Morita equivalence between symplectic
groupoids is a symplectic bibundle which is biprincipal.

If P1 and P2 are Poisson manifolds, and if P1
J1← S

J2→ P2 is a (P1, P2)-
bimodule, then we obtain a left symplectic action of the groupoid G(P1)
and right symplectic action of G(P2),

G(P1)

�� ��

S

J1
����

��
��

��
�

J2
����

��
��

��
� G(P2)

�� ��

P1 P2

The property that {J∗
1 C∞(P1), J∗

2 C∞(P2)} = 0 implies that the actions
of G(P1) and G(P2) commute, so that S is a symplectic (G(P1),G(P2))-
bibundle. We say that a symplectic bimodule P1

J1← S
J2→ P2 is regular if

the associated symplectic (G(P1),G(P2))-bibundle is left principal. The
tensor product of symplectic bimodules defined in Section 4.1 coincides
with their tensor product as symplectic bibundles. As a result, the tensor
product of regular symplectic bimodules is smooth and regular.
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Remark 4.25 (Regular bimodules)
Regular bimodules can be described with no reference to the sym-

plectic groupoid actions: P1
J1← S

J2→ P2 is regular if and only if J1 and
J2 are complete Poisson maps, J1 is a submersion, J2 is a surjective
submersion with simply-connected fibres, and the J1- and J2-fibres are
symplectic orthogonal of one another.

Exercise
Prove the equivalent formulation of regular bimodules in Remark 4.25.

(Hint: this is a slight extension of [94, Thm. 3.2])

We define the category Poiss in which the objects are integrable Pois-
son manifolds and morphisms are isomorphism classes of regular sym-
plectic bimodules.

If P1
J1← S

J2→ P2 is a Morita equivalence of Poisson manifolds, then the
regularity assumptions on the maps J1 and J2 insure that S is biprin-
cipal for the induced actions of G(P1) and G(P2), so that S is also a
Morita equivalence for the symplectic groupoids G(P1) and G(P2). On
the other hand, if G1 and G2 are source-simply-connected symplectic
groupoids over P1 and P2, respectively, then a (G1,G2)-Morita equiva-
lence is a (P1, P2)-Morita equivalence. So two integrable Poisson mani-
folds P1 and P2 are Morita equivalent if and only if their source-simply-
connected integrations, G(P1) and G(P2), are Morita equivalent as sym-
plectic groupoids.

Remark 4.26 (Lie functor)
It follows from the discussion above that there exists a natural

equivalence between the category of source-simply-connected symplectic
groupoids with morphisms being Morita equivalences (resp. left principal
symplectic bibundles), and the category of integrable Poisson manifolds
with morphisms being Morita equivalences (resp. regular bimodules).
These equivalences are similar to the one between the categories of Lie
algebras and simply-connected Lie groups, with their usual morphisms.

Example 4.27 (Symplectic manifolds)
Let P be a connected symplectic manifold. The universal cover of P

with base point x, denoted P̃ , is a Morita equivalence between the sym-
plectic groupoid G(P ), which in this case is the fundamental groupoid
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of P , and π1(P, x):

G(P )

�� ��

P̃

����
��

��
��

�

����������� π1(P, x)

�� ��

P {x}

(60)

Note that π1(P, x) is a symplectic groupoid for the zero-dimensional
Poisson manifold {x}, though generally not the source-simply-connected
one.

In analogy with Example 4.16 on hamiltonian actions, there is an
equivalence of categories between complete symplectic realizations of
P and symplectic actions of π1(P, x). This suggests the slogan that “a
(connected) symplectic manifold P with fundamental group π1(P ) is the
dual of the Lie algebra of π1(P )”.

It follows from the Morita equivalence (60) and the discussion about
Morita equivalence of groups in Section 3.1 that connected symplectic
manifolds P1 and P2 are Morita equivalent if and only if π1(P1) ∼= π1(P2).

Example 4.28 (Symplectic fibrations)
It follows from the previous example that every simply-connected

symplectic manifolds is Morita equivalent to a point. Similarly, if (Q,Π)
is a Poisson manifold with Π = 0, then Q is Morita equivalent to any
product Q × S where S is a simply-connected symplectic manifold. In
fact, Q× S

pr1← T ∗Q× S
pr2→ Q is a Morita bimodule, where pr1 and pr2

are the natural projections.
More generally, let us assume that P is a Poisson manifold whose

symplectic foliation is a fibration P → Q with simply-connected fibres.
In general, there are obstructions to P being Morita equivalent to Q

[94]: P is Morita equivalent to Q if and only if there exists a closed 2-
form on P which restricts to the symplectic form on each fibre. We will
have more to say about “fibrating” Poisson manifolds and their Morita
invariants in Section 4.7.

Example 4.29 (Lie-Poisson structures)
Let us consider g∗1 and g∗2, the duals of the Lie algebras g1 and g2,

equipped with their Lie-Poisson structures. Then g∗1 and g∗2 are Morita
equivalent if and and only they are isomorphic. Indeed, suppose that
g∗1

J1← S
J2→ g∗2 is a Morita bimodule, and let X = J−1

2 (0). A dimension
count shows that there exists µ ∈ g∗1 such that X = J−1

1 (µ). Since S

is a biprincipal bibundle for the symplectic groupoids G(g∗i ) = T ∗Gi,
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i = 1, 2, it follows that X is a (G1, G2)-Morita bibundle. Therefore G1

and G2 are isomorphic, and so are g∗1 and g∗2.
This example also follows from the Morita invariants discussed in

Section 4.7.

Example 4.30 (Topologically stable structures on surfaces)
Let Σ be a compact, connected, oriented surface equipped with a

Poisson structure Π which has at most linear degeneracies and whose
zero set consists of n smooth, disjoint, closed curves, for n ≥ 0. These
are called topologically stable structures (TSS) [71].

Any two modular vector fields for Π [92] coincide at points where
Π vanishes, so the curves in the zero set carry a natural orientation.
We denote the zero set of Π, regarded as an oriented 1-manifold, by
Z(Σ,Π). Two TSS (Σ,Π) and (Σ,Π′) are topologically equivalent if
there is an orientation-preserving diffeomorphism ψ : Σ → Σ′ such that
ψ(Z(Σ,Π)) = Z(Σ′,Π′). We denote the equivalence class of Z(Σ,Π)
by [Z(Σ,Π)]. This class can be represented by an oriented labeled graph
G(Σ,Π): each vertex corresponds to a 2-dimensional leaf of the structure,
two vertices being connected by an edge for each boundary zero curve
they share; each edge is oriented to point toward the vertex for which
Π is positive with respect to the orientation of Σ. We then label each
vertex by the genus of the corresponding leaf.

It turns out that the topology of the zero set plus the modular periods
(periods of a modular vector field around the zero curves) completely
determine the Morita equivalence class of TSS [16, 19]. In fact, let us de-
fine a more elaborate graph GT (Σ,Π), obtained from G(Σ,Π) by labeling
each of its edges by the modular period around the corresponding zero
curve. Then two TSS (Σ,Π) and (Σ′,Π′) are Morita equivalent if and
only if there is an isomorphism of labeled graphs GT (Σ,Π) ∼= G(Σ′,Π′).
(It follows from the results in [29] that TSS are always integrable.)

The classification of TSS up to Morita equivalence was preceded by
(and builds on) their classification up to orientation-preserving Poisson
diffeomorphisms by Radko [71], who shows that the topological class of
the zero set and the modular periods, together with a certain volume
invariant (generalizing the Liouville volume when the TSS is symplectic),
form a complete set of invariants.

Remark 4.31 (Morita equivalence of presymplectic groupoids and “mo-
mentum map theories”)

As we noted in Examples 4.16 and 4.20, hamiltonian spaces can be
seen as modules over Lie-Poisson structures on duals of Lie algebras,
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whereas quasi-hamiltonian (or hamiltonian quasi-Poisson) manifolds are
modules over Cartan-Dirac structures on Lie groups. Thus, the category
of modules over an arbitrary (integrable) Poisson or Dirac manifold can
be regarded as the category of “hamiltonian spaces” for some gener-
alized “momentum map theory”. Since Morita equivalence establishes
an equivalence of categories of modules, it provides a precise notion of
equivalence for “momentum map theories” and automatically implies
the existence of other invariants (such as classical intertwiner spaces–see
Remark 4.23).

An extended notion of Morita equivalence for φ-twisted presymplectic
groupoids (or, infinitesimally, φ-twisted Dirac structures) was developed
by Xu in [97]. In Xu’s work, it is shown that various known correspon-
dences of “momentum map theories” can be described by appropriate
Morita equivalences. Examples include the equivalence between ordi-
nary momentum maps and momentum maps for actions of Poisson-Lie
groups (taking values in the dual group) [1, 42] and the one between
quasi-hamiltonian spaces for groups and ordinary hamiltonian spaces
for their loop groups [3]. An interesting feature of Morita equivalence
for presymplectic groupoids is that the bimodules are not simply a pair
of modules structures which commute.

Besides relating “momentum map theories”, Morita equivalence of
groupoids plays a central role in certain approaches to geometric quan-
tization of these generalized hamiltonian spaces, where the usual line
bundles are replaced by gerbes [8, 54].

4.6 Picard groups

Just as for algebras, there are Picard groupoids associated with the
categories Poiss and SG. In particular, the isomorphism classes of Morita
self-equivalences of a Poisson manifold P (resp. symplectic groupoid G)
form a group Pic(P ) (resp. Pic(G)), called the Picard group. It follows
from the discussion in the previous section that Pic(P ) = Pic(G(P )).

We now discuss some examples of “geometric” Picard groups; see [19]
for details.

Example 4.32 (Picard groups of groups)
As we saw in Section 4.3, geometric Morita equivalences between

groups are closely related to group isomorphisms. A closer analysis shows
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that the Picard group of a group G is naturally isomorphic to its group
OutAut(G) := Aut(G)/InnAut(G) of outer automorphisms.

It follows from Example 4.15 and the invariance of Picard groups
under Morita equivalence that, if G is a transitive groupoid over P , then
Pic(G) ∼= OutAut(Gx), where Gx is the isotropy group at a point x ∈ P .
This isomorphism is natural, so the outer automorphism groups attached
to different points are all naturally isomorphic to one another.

Example 4.33 (Picard groups of symplectic manifolds)
Since, according to Example 4.27, the fundamental groupoid of a con-

nected symplectic manifold P is Morita equivalent to any of its funda-
mental groups π1(P, x), it follows from Example 4.32 that, for such a
manifold, Pic(P ) is naturally isomorphic to OutAut(π1(P, x)) for any x

in P .

The Picard group of a Poisson manifold or symplectic manifold is also
related to a group of outer automorphisms of the manifold itself. For a
Poisson manifold P , let Aut(P ) denote its group of Poisson diffeomor-
phisms. There is a natural map

j : Aut(P ) → Pic(P ), (61)

analogous to (34), which assigns to each ψ ∈ Aut(P ) the isomorphism

class of the bimodule P
t←− G(P )

ψ−1◦s−→ P . Any lagrangian bisection
of G(P ) (which is the analogue of a group element) naturally induces a
Poisson diffeomorphism of P that we call an inner automorphism. It
turns out that ker(j) = InnAut(P ), the group of inner automorphisms
of P , just as in the algebraic setting discussed in Section 3.1.

The situation for symplectic groupoids is completely analogous [19].

Exercise
Let P be the 2n dimensional torus R2n/(2πZ)2n with a symplectic

structure of the form 1
2ωijdθi ∧ dθj , where ω is a nondegenerate anti-

symmetric matrix of real constants. Show that the Picard group of P

is independent of the choice of ω, while the subgroup of Pic(P ) arising
from outer automorphisms of (P, ω) does depend on ω.

Exercise
Compare OutAut(P ) with Pic(P ) when P is the disjoint union of

several 2-dimensional spheres, possibly with different symplectic areas.
Hint: use the theorems of Smale [81] and Moser [66] to show that every
symplectomorphism of S2 is inner.
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There are geometric versions of the maps (33) and (35). Let P1
J1←

S
J2→ P2 be a Morita equivalence. If O ⊆ P2 is a symplectic leaf, then

J1(J−1
2 (O)) is a symplectic leaf of P1, and this is a bijective correspon-

dence between symplectic leaves. So, for a Poisson manifold P , we have
a map

Pic(P ) → Aut(Leaf(P )), (62)

where Leaf(P ) is the leaf space of P , analogous to the map (35). We
define the static Picard group SPic(P ) of P as the kernel of (62),
i.e., the self-Morita equivalences inducing the identity map on the leaf
space. Note that functions on the leaf space constitute the center of the
Poisson algebra of functions on P , hence the terminology analogous to
that for algebras.

Example 4.34 (Zero Poisson structures)
As we saw in Example 4.9, in this case G(P ) = T ∗P , and Pic(P ) =

Pic(T ∗P ). Since Leaf(P ) = P , (62) implies that each self-Morita bi-
module S induces a diffeomorphism ψ of P . So composing S with ψ−1

defines an element of the static Picard group SPic(P ). A direct compu-
tation shows that the map (62) is split by the map Aut(P ) → Pic(P )
(61), hence

Pic(P ) = Diff(P ) � SPic(P ),

in complete analogy with (36). Bimodules in SPic(P ) are of the form

S

p

��

p

��

P

(63)

so each fibre p−1(x) is lagrangian and simply-connected; moreover, the
fact that p is a complete Poisson map implies that the p-fibres are com-
plete with respect to their natural affine structure.

Since P ← S → P is a Morita bimodule, the p-fibres are isomorphic
to the fibres of the symplectic groupoid target map T ∗P → P , so they
are contractible. As a result, there exists a cross section P → S, which
implies that there is a diffeomorphism S ∼= T ∗P preserving the fibres
[19, Sec. 3]. Hence, in order to characterize a bimodule (63), the only
remaining freedom is on the choice of symplectic structure on T ∗P . It
turns out that the most general possible symplectic structure on T ∗P

with respect to which the fibres of T ∗P → P are lagrangian and complete
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is of the form:

ω + p∗B,

where ω is the canonical symplectic form on T ∗P and B is a closed 2-
form on P (a “magnetic” term). One can show that two such bimodules
are isomorphic if and only if B is exact. Hence

SPic(P ) ∼= H2(P, R), (64)

and

Pic(P ) ∼= Diff(P ) � H2(P, R), (65)

where the semi-direct product is with respect the natural action of
Diff(P ) on H2(P, R) by pull back. The reader can find the details in
[19, Sec. 6.2].

Remark 4.35 (An intriguing resemblance)
Recall from Example 3.5 that the Picard group of the algebra C∞(P )

(which can be seen as a trivial quantization of (P,Π), if Π = 0) is
Diff(P ) � H2(P, Z). Is there a theorem relating classical and quantum
Picard groups which would explain the similarity between this fact and
(65)?

4.7 Fibrating Poisson manifolds and Morita
invariants

In this section, we will discuss “rigidity” aspects of geometric Morita
equivalence. As we saw in Theorem 4.21, Morita equivalence preserves
categories of “geometric representations”. We point out a few other in-
variants, some of which have already appeared in previous sections.

1. As shown in Example 4.27, the Morita equivalence class of a symplec-
tic manifold is completely determined by the isomorphism class of its
fundamental group;

2. As remarked in Section 4.6, Morita equivalence induces a one-to-one
correspondence of symplectic leaves, which is a diffeomorphism when-
ever the leaf spaces are smooth; moreover, corresponding symplectic
leaves are themselves Morita equivalent [16, 30] and have isomorphic
transverse Poisson structures [88];

3. Morita equivalence preserves first Poisson cohomology groups [28, 41],
and modular classes [28, 92];
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4. The monodromy groups and isotropy Lie algebras are Morita invari-
ant [30].

As remarked in [30], all the invariants listed above turn out to be
preserved by a notion of equivalence which is much weaker than Morita
equivalence, called weak Morita equivalence, which does not require the
integrability of Poisson manifolds. We do not know any Morita invariant
which is not a weak Morita invariant.

By 1. above, the only Morita invariant of a connected symplectic
manifold is its fundamental group. For a disjoint union of symplectic
components, it is the unordered list of fundamental groups which counts;
in particular, if all the components are simply connected, the number of
components is a complete invariant. In this section, we will see that the
Morita invariant structure is much richer for a Poisson manifold which
is a smooth family of (diffeomorphic) symplectic manifolds.

We will say that a Poisson manifold P is fibrating if its symplec-
tic leaves are the fibres of a smooth locally trivial fibration from P to
Leaf(P ). Here, locally triviality is meant in the differentiable rather than
symplectic sense; in fact, it is the variation in symplectic structure from
fibre to fibre which will concern us.

When P is fibrating, the fibrewise homology groups H2(Fib, Z) form
a locally trivial bundle of abelian groups over Leaf(P ). Pairing with
the fibrewise symplectic structure gives a map H2(Fib, Z) → R, which
encodes the variation of the symplectic cohomology class from fibre to fi-
bre. The derivative of this map with respect to the base point in Leaf(P )
gives rise to a map ν : H2(Fib, Z) → T ∗Leaf(P ).

The map ν vanishes on torsion elements of H2(Fib, Z), so its image is a
family of embedded abelian groups in the fibres of T ∗Leaf(P ), called the
variation lattice of P . Dazord [33] proves that, if P is integrable and
has simply connected fibres, the variation lattice must be topologically
closed with constant rank, having local bases of closed 1-forms. Failure
of the variation lattice to have these properties provides an obstruction
to integrability which was extended to general Poisson manifolds in [30].

A nice application of the variation lattice is to the study of the Picard
groups of the duals of Lie algebras of compact groups [19], in which the
lattice imparts a flat affine structure to the regular part of the symplectic
leaf space.

Example 4.36 (Nonintegrable Poisson structures revisited)
Let us again consider P = R × S2 from Example 4.12, with Poisson

structure (1/f(t))ΠS2 ×0, f(t) > 0. The area of the symplectic leaf over
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t ∈ R is 4πf(t). The variation lattice is spanned by 4πf ′(t)dt, so it has
constant rank if and only if f ′(t) ≡ 0 or f ′(t) is not zero for all t.

If P1 and P2 are Morita equivalent fibrating Poisson manifolds with
simply connected leaves, then the induced diffeomorphism Leaf(P1) →
Leaf(P2) preserves the variation lattice; this can be seen as a special case
of 4. above. So, although Morita equivalence does not determine the fi-
brewise symplectic structures, it is sensitive to how symplectic structures
vary from fibre to fibre. This sensitivity leads to the following example
[94], of Poisson manifolds which are representation equivalent but not
Morita equivalent (see Remark 4.22).

Example 4.37 (Representation equivalence vs. Morita equivalence)
Consider (0, 1) × S2 with Poisson structures Π1 and Π2 determined

by the fibrewise symplectic structures (1/t)ΠS2 and (1/2t)ΠS2 , respec-
tively. Their variation lattices are spanned by 4πdt and 8πdt, respec-
tively. Since there is no diffeomorphism of (0, 1) taking dt to 2dt, these
structures cannot be Morita equivalent. Note however that these struc-
tures are representation equivalent: representations of Π1 and Π2 can
be interchanged by dividing or multiplying the symplectic form on the
realizations by 2.

Remark 4.38 (A complete invariant? )
Xu [94] shows that the leaf space with its variation lattice completely

determines the Morita equivalence class of a fibrating Poisson manifold
for which the symplectic leaves are simply connected and form a differ-
entiably globally trivial fibration. It does not seem to be known whether
this result persists without the global triviality assumption. The attempt
to attack this problem by “gluing” together applications of the known
case to local trivializations seems to lead to the problem of computing
the static Picard group of a fibrating Poisson manifold.

To extend the discussion above to the case where the leaves are not
simply connected, it seems that the variation lattice should be replaced
by its “spherical” part, obtained by replacing H2(Fib, Z) by the subgroup
consisting of the spherical classes, i.e. the image of the Hurewicz homo-
morphism from the bundle π2(Fib) of homotopy groups. This spherical
variation lattice is very closely related to the monodromy groups in [30].
Details in this case should be interesting to work out, particularly when
the symplectic leaf fibration is not globally trivial.

Remark 4.39 (Noncompact fibres)
If the leaves of a fibrating Poisson manifold are compact, Moser’s
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theorem [66] implies that the variation lattice actually measures how
the isomorphism class of the symplectic structure varies from leaf to
leaf. If the leaves are noncompact, e.g. if they are discs in R2, then
their area can vary without this being detected by any Morita invariant.
Is there another notion of Morita invariance which would detect the
variation from fibre to fibre of symplectic volume or other invariants,
such as capacities?

Remark 4.40 (Morita equivalence for nonintegrable Poisson mani-
folds).

For a fibrating Poisson manifold which is nonintegrable, the variation
lattice still exists, so one might hope that it is still a Morita invariant
when the leaves are simply connected. But there is no Morita equivalence
between such a manifold and itself, much less another one. To remedy
this problem, we should extend the notion of Morita equivalence to ad-
mit as bimodules smooth stacks which are not manifolds, as we did for
self-equivalences in Section 4.2. If we do this, then the variation lattice
is indeed Morita invariant. In particular, this shows that integrability is
an invariant property under this broadened notion of Morita invariance.
Moreover, it turns out that any “S”-Morita equivalence between inte-
grable Poisson manifolds is given by a manifold, so that the integrable
part of the Picard groupoid remains unchanged. It would be interesting
to see how S-Morita equivalence is related to weak Morita equivalence.

4.8 Gauge equivalence of Poisson structures

Let P be a manifold, and let φ ∈ Ω3(P ) be closed. There is a natural
way in which closed 2-forms on P act on φ-twisted Dirac structures: if
B ∈ Ω2(P ) is closed and L is a φ-twisted Dirac structure on P , then we
set

τB(L) := {(X,α + B̃(X)) | (X,α) ∈ L},

which is again a φ-twisted Dirac structure. We call this operation on
Dirac structures a gauge transformation associated with a 2-form
[80]. (More generally, for an arbitrary B, τB(L) is a (φ − dB)-twisted
Dirac structure.) Geometrically, a gauge transformation changes a Dirac
structure L by adding the pull-back of a closed 2-form to its leafwise
presymplectic form.
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Remark 4.41 (Gauge transformations and B-fields)
In a completely similar way, complex closed 2-forms act on complex

Dirac structures. If B ∈ Ω2(P ) is a real 2-form, and L is a generalized
complex structure on P (see Remark 2.11), then one can show that τB(L)
is again a generalized complex structure, and this operation is called a
B-field transform [43, 46].

If Π is a Poisson structure on P , then changing it by a gauge trans-
formation will generally result in a Dirac structure which is no longer
Poisson. In fact, if B ∈ Ω2(P ) is closed, then τB(LΠ) is a Poisson struc-
ture if and only if the bundle map

Id + B̃Π̃ : T ∗P → T ∗P (66)

is invertible. In this case, the resulting Poisson structure is the one as-
sociated with the bundle map

Π̃(Id + B̃Π̃)−1 : T ∗P → TP,

and we denote it by τB(Π).
Let (P,Π) be a fibrating Poisson manifold, as in Section 4.7. Since

a gauge transformation adds the pull-back of a closed 2-form on P to
the symplectic form on each fibre, the cohomology classes of fibrewise
symplectic forms may change in this operation; however, the way they
vary from fibre to fibre does not. This suggests that gauge transforma-
tions preserve the Morita equivalence class of (P,Π). In fact, this holds
in complete generality [16]:

Theorem 4.42 Gauge equivalence of integrable Poisson structures im-
plies Morita equivalence.

Since gauge transformations do not change the foliation of a Poisson
structure, there is no hope that the converse of Theorem 4.42 holds, since
even Poisson diffeomorphic structures may have different foliations.

We call two Poisson manifolds (P1,Π1) and (P2,Π2) gauge equiv-
alent up to Poisson diffeomorphism if there exists a Poisson dif-
feomorphism ψ : (P1,Π1) → (P2, τB(Π2)) for some closed 2-form
B ∈ Ω2(P2). It clearly follows from Theorem 4.42 that if two integrable
Poisson manifolds are gauge equivalent up to a Poisson diffeomorphism,
then they are Morita equivalent. The following properties are clear:

1. Two symplectic manifolds are gauge equivalent up to Poisson diffeo-
morphism if and only if they are symplectomorphic;
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2. If two Poisson manifolds are gauge equivalent up to Poisson diffeo-
morphism, then they have isomorphic foliations (though generally
different leafwise symplectic structures);

3. The Lie algebroids associated with gauge equivalent Dirac structures
are isomorphic [80]; as a result, two Poisson manifolds which are gauge
equivalent up to Poisson diffeomorphism have isomorphic Poisson co-
homology groups.

A direct comparison between the properties above and the Morita in-
variants listed in Section 4.7 suggests that Morita equivalence should still
be a weaker notion of equivalence. Indeed, two nonisomorphic symplectic
manifolds with the same fundamental group are Morita equivalent, but
not gauge equivalent up to Poisson diffeomorphism. In [16, Ex. 5.2], one
can also find examples of Morita equivalent Poisson structures on the
same manifold which are not gauge equivalent up to Poisson diffeomor-
phism by finding nonequivalent symplectic fibrations with diffeomorphic
total space and base (and using Example 4.28). Nevertheless, there are
interesting classes of Poisson structures for which both notions of equiv-
alence coincide, such as the topologically stable structures of Example
4.30 [16, 19].

Remark 4.43 (Gauge transformations and Morita equivalence of quan-
tum algebras)

As mentioned in Remark 3.14, gauge transformations associated with
integral 2-forms define an action of H2(P, Z) on formal Poisson struc-
tures on P which can be “quantized” (via Kontsevich’s quantization
[49]) to Morita equivalent deformation quantization algebras.

On the other hand, gauge transformations of translation-invariant
Poisson structures on tori are particular cases of the linear fractional
transformations (45), which quantize, according to Theorem 3.15, to
strongly Morita equivalent quantum tori. As we already mentioned in
Remark 4.35, it would be very interesting to have a unified picture relat-
ing Morita equivalence of quantum algebras to geometric Morita equiv-
alence.
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Geometric representation equivalence

In Chapter 4, we considered the category of P -modules (i.e. complete
symplectic realizations) over a Poisson manifold P , the geometric ana-
logue of the category of left modules over an algebra. We observed in
Remark 4.37 that, unlike the category of representations of an algebra,
this category does not determine the Morita equivalence class of P . In
this chapter, we will discuss refinements of the notion of category of
representations of a Poisson manifold in order to remedy this defect.

The contents of Sections 5.2, 5.3 are preliminary ideas, and a fuller
treatment is in progress.

5.1 Symplectic torsors

The first refinement we discuss is motivated by the theory of differen-
tiable stacks [7, 60, 70].

Given a Lie groupoid G, let BG denote the category of (left) G-torsors.
If two Lie groupoids G1 and G2 are Morita equivalent, then the natural
functor BG1 → BG2 induced by any Morita bibundle establishes an
equivalence of these categories.

However, to recover the Morita equivalence class of G from BG, one
needs to consider another piece of information: the natural “projection”
functor BG → C, where C denotes the category of smooth manifolds,
which assigns to a G-torsor S → M the manifold M = S/G. The category
BG together with this projection functor is an example of a differentiable
stack. Taking this extra structure into account, one defines BG1 and BG2

to be isomorphic if there is an equivalence of categories BG1 → BG2

commuting with the respective “projections” into C.
It is clear that a functor induced by a Morita bibundle establishes

67
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an isomorphism of stacks of torsors. It turns out that the converse is
also true: if BG1 and BG2 are isomorphic in this refined sense, then the
Lie groupoids G1 and G2 are Morita equivalent. As we will see, much of
this discussion can be adapted to the context of Poisson manifolds and
symplectic groupoids.

Let P be an integrable Poisson manifold. A symplectic P -torsor is
a complete symplectic realization J : S → P with the additional prop-
erty that the induced left action of the symplectic groupoid G(P ) on S is
principal. Note that, in this case, the manifold M = S/G(P ) has a nat-
ural Poisson structure. (As with the regular bimodules in Remark 4.25,
we can also describe symplectic torsors without reference to groupoids:
J : S → P should be a surjective submersion, and the symplectic or-
thogonal leaves to the J-fibres should be simply-connected and form a
simple foliation.)

Instead of considering the category of all complete symplectic real-
izations over a Poisson manifold P , let us consider the category BP

of symplectic P -torsors, as we did for Lie groupoids. If we restrict the
morphisms in BP to symplectomorphisms, then there is a well-defined
“projection” functor BP → CPois, where CPois denotes the category
of Poisson manifolds, with ordinary (invertible) Poisson maps as mor-
phisms. As in the case of Lie groupoids, we refine the notion of isomor-
phism of categories to include the “projection” functors: BP1 and BP2

are isomorphic if there is an equivalence of categories BP1 → BP2

commuting with the projections BPi → CPois, i = 1, 2. In this setting,
it is also clear that a Morita equivalence of P1 and P2 induces an iso-
morphism between BP1 and BP2. The following is a natural question:
If BP1 and BP2 are isomorphic, must P1 and P2 be Morita equivalent
Poisson manifolds?

In Remark 4.37, we saw that the Poisson manifolds P1 = ((0, 1) ×
S2, (1/t)ΠS2) and P2 = ((0, 1) × S2, (1/2t)ΠS2) are not Morita equiv-
alent, but there is an equivalence of categories BP1 → BP2. However,
this equivalence does not commute with the “projection” functors, so it
is not an isomorphism in the refined sense. Thus there is some hope that
the answer to the question above is “yes,” though we do not yet have a
complete proof.
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5.2 Symplectic categories

The next approach to find a “category of representations” that deter-
mines the Morita equivalence class of a Poisson manifold is based on
the notion of “symplectic category”. One can think of it as the classical
limit of the usual notion of abelian category, in the sense that the vector
spaces (or modules) of morphisms in the theory of abelian categories
are replaced by symplectic manifolds. Notice that we are referring to
a “symplectic category”, rather than the symplectic “category” of [87].
From now on, we will drop the quotation marks when referring to the
new notion.

In a symplectic category, one has a class of objects, and, for any
two objects A and B, a symplectic manifold, denoted by Hom(A,B),
which plays the role of the space of morphisms from B to A. Given
three objects A, B and C, the “composition operation” Hom(A,C) ←
Hom(A,B)×Hom(B,C) is a lagrangian submanifold

LABC ⊂ Hom(A,C)×Hom(A,B)×Hom(B,C).

This may not be the graph of a map, but just a canonical relation, so we
will refer to it as the composition relation. So, unlike in ordinary cat-
egories, Hom(A,B) should not be thought of as a set of points. Instead,
certain lagrangian submanifolds of Hom(A,B) will play the role of “in-
vertible elements”, so that we can talk about “isomorphic” objects (this
can also be done intrinsically via lagrangian calculus). In other words,
the guiding principle is to think of a symplectic category as a category
in the symplectic “category.”

A functor between symplectic categories should consist of a map
F between objects together with symplectic maps (or, more generally,
canonical relations) Hom(A,B) → Hom(F (A), F (B)), so that the in-
duced map from

Hom(A,C)×Hom(A,B)×Hom(B,C)

to

Hom(F (A), F (C))×Hom(F (A), F (B))×Hom(F (B), F (C))

maps the composition relation LABC to LF (A)F (B)F (C). It is also natural
to require that if Hom(A,B) contains “invertible elements”, then so does
Hom(F (A), F (B)).

If S and S ′ are symplectic categories, then a functor S → S ′ is an
equivalence of symplectic categories if for any object A′ in S ′, there
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exists an object A such that F (A) and A are “isomorphic” (in the sense
that Hom(F (A), A′) contains an “invertible element”), and the maps
Hom(A,B) → Hom(F (A), F (B)) are symplectomorphisms.

We have not answered some questions about symplectic categories
which arise naturally. Is Hom(A,A) always a symplectic groupoid? If
not, what are sufficient conditions? Is there always a “base” functor
from a given symplectic category to the category of Poisson manifolds
and Morita morphisms? Nevertheless, we can still discuss interesting
examples, such as the one which follows.

5.3 Symplectic categories of representations

In the theory of abelian categories, a model example is the category of
modules over a ring (for instance, the group ring of a group, in which case
we have a category of representations). The morphisms are module ho-
momorphisms (or intertwining operators in the case of representations).
The symplectic analogue of this example is the “symplectic category” of
representations of a Poisson manifold, in which objects are symplectic
realizations and spaces of morphisms are the classical intertwiner spaces.

To avoid smoothness issues, we will be more restrictive and define the
representation category of a Poisson manifold P to be the symplectic
category in which the objects are symplectic P -torsors S → M which
are (P,M)-Morita equivalences, and the morphism spaces are classical
intertwiner spaces, Hom(S1, S2) := S2 ∗P S1.

Composition relations are given by

LS1S2S3 := {([(z, x)], [(y, x)], [(z, y)])}
⊂ S3 ∗P S1 × S2 ∗P S1 × S3 ∗P S2 (67)

where [(a, b)] ∈ S′ ∗P S denotes the image of (a, b) ∈ S′ ×P S under the
natural projection.

Exercise
Check that the composition relation (67) is a lagrangian submanifold.

(Hint: first prove it when P is a point, then use coisotropic reduction for
the general case.)

Note that Hom(S, S) = S ∗P S is symplectomorphic to the symplectic
groupoid G(M), where M = S/G(P ).



5.3 Symplectic categories of representations 71

Exercise
Show that the composition relation in Hom(S, S) = G(M), where

M = S/G(P ), is just the graph of the groupoid multiplication

G(M) ← G(M)×(s,t) G(M)

in G(M)× G(M)× G(M).

Finally, we define “invertible elements” in Hom(S1, S2) = S2 ∗P S1

to be those lagrangian submanifolds which are the reductions of graphs
of isomorphisms of symplectic realizations S1 → S2 via the coisotropic
submanifold S2 ×P S1 of S2 × S1. In particular, two symplectic realiza-
tions are “isomorphic” in the representation category of P if and only if
they are isomorphic in the usual sense.

Proposition 5.1 Two Poisson manifolds are Morita equivalent if and
only if they have equivalent representation categories.

Proof Suppose that P1 and P2 are Morita equivalent, and let X be a
(P1, P2)-Morita bimodule. Let S(Pi) denote the representation category
of Pi, i = 1, 2. Then X induces an equivalence of symplectic categories
S(P2) → S(P1): at the level of objects, a Morita bimodule P2 ← S → M

is mapped to the Morita bimodule P1 ← X∗P2 S → M ; if P1 ← S′ → M ′

is an object in S(P1), then X ∗P1 S′ is an object in S(P1) such that S′

and X ∗P2 X ∗P1 S′ are isomorphic; at the level of morphisms, because
S2 ∗P2 S1

∼= S2 ∗P2 X∗P1 X∗P2 S1, we have a natural symplectomorphism

Hom(S1, S2) ∼= Hom(X ∗P1 S1,X ∗P1 S2).

Conversely, suppose that F : S(P2) → S(P1) is an equivalence
of symplectic categories, and let P2 ← S → M be an object in
S(P2). Then there is a symplectomorphism from Hom(S, S) = G(M)
to Hom(F (S), F (S)) = G(M ′), where M ′ = F (S)/G(P1). Since this
symplectomorphism preserves the composition relation, it is a symplec-
tic groupoid isomorphism. In particular, M and M ′ are isomorphic as
Poisson manifolds, which implies that F (S) is a (P1,M)-Morita bimod-
ule. If we take S = G(P2), then M = P2 and F (S) is a (P1, P2)-Morita
bimodule.

The equivalence in Remark 4.37 does not preserve intertwiner spaces
(their symplectic structures are related by a factor of 2), so it does not
contradict the result above.
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1

Introduction

This work is based on the course given during the international Eu-
roschool on Poisson Geometry, Deformation Quantisation and Group
Representations held in Brussels in 2003.

The main goal is to describe Kontsevich’s proof of the formality of
the (differential graded) Lie algebra of multidifferential operators on Rd

and its relationship to the existence and classification of star products
on a given Poisson manifold. We start with a survey of the physical
background which gave origin to such a problem and a historical review
of the subsequent steps which led to the final solution.

1.1 Physical motivation

In this Section we give a brief overview of physical motivations that
led to the genesis of the deformation quantization problem, referring to
the next Sections and to the literature cited throughout the paper for a
precise definition of the mathematical structures we introduce.

In the hamiltonian formalism of classical mechanics, a physical system
is described by an even-dimensional manifold M — the phase space
— endowed with a symplectic (or more generally a Poisson) structure
together with a smooth function H — the hamiltonian function — on
it. A physical state of the system is represented by a point in M while
the physical observables (energy, momentum and so on) correspond to
(real) smooth functions on M . The time evolution of an observable O is
governed by an equation of the form

dO

d t
= {H , O }
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82 1 Introduction

where { , } is the Poisson bracket on C∞(M). This bracket is completely
determined by its action on the coordinate functions

{ pi , qj } = δij

(together with { pi , pj } = { qi , qj } = 0) where (q1, . . . , qn, p1, . . . , pn)
are local coordinates on the 2n-dimensional manifold M .

On the other hand, a quantum system is described by a complex
Hilbert space H together with an operator Ĥ. A physical state of the
system is represented by a vector1 in H while the physical observables
are now self-adjoint operators in L(H). The time evolution of such an
operator in the Heisenberg picture is given by

d Ô

d t
=

i

�

[
Ĥ , Ô

]
where [ , ] is the usual commutator which endows L(H) with a Lie alge-
bra structure. The correspondence with classical mechanics is completed
by the introduction of the position q̂i and momentum p̂j operators, which
satisfy the canonical commutation relations:

[ p̂i , q̂j ] =
i

�
δij .

This correspondence is by no means a mere analogy, since quantum
mechanic was born to replace the hamiltonian formalism in such a way
that the classical picture could still be recovered as a “particular case”.
This is a general principle in the development of a new physical theory:
whenever experimental phenomena contradict an accepted theory, a new
one is sought which can account for the new data, but still reduces to the
previous formalism when the new parameters introduced go to zero. In
this sense, classical mechanics can be regained from the quantum theory
in the limit where � goes to zero.

The following question naturally arises: is there a precise mathemat-
ical formulation of this quantization procedure in the form of a well-
defined map between classical objects and their quantum counterpart?

Starting from the canonical quantization method for R2n, in which
the central role is played by the canonical commutation relation, a first
approach was given by geometric quantization: the basic idea underlying
this theory was to set a relation between the phase space R2n and the

1 Actually, due to the linearity of the dynamical equations, there is a non-physical
multiplicity which can be avoided rephrasing the quantum formalism on a
projective Hilbert space, thus identifying a physical state with a ray in H
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corresponding Hilbert space L(Rn) on which the Schrödinger equation
is defined. The first works on geometric quantization are due to Souriau
[43], Kostant [32] and Segal [41], although many of their ideas were
based on previous works by Kirillov [31]. We will not discuss further
this approach, referring the reader to the cited works.

On the other hand, one can focus attention on the observables in-
stead of the physical states, looking for a procedure to get the non-
commutative structure of the algebra of operators from the commuta-
tive one on C∞(R2n

)
. However, one of the first result achieved was the

“no go” theorem by Groenwold [25] which states the impossibility of
quantizing the Poisson algebra C∞(R2n

)
in such a way that the Pois-

son bracket of any two functions is sent onto the Lie bracket of the two
corresponding operators. Nevertheless, instead of mapping functions to
operators, one can “deform” the pointwise product on functions into
a non-commutative one, realizing, in an autonomous manner, quantum
mechanics directly on C∞(R2n

)
: this is the content of the deformation

quantization program promoted by Flato in collaboration with Bayen,
Fronsdal, Lichnerowicz and Sternheimer,

1.2 Historical review of deformation quantization

The origins of the deformation quantization approach can be traced back
to works of Weyl’s [46], who gave an explicit formula for the operator
Ω(f) on L(Rn) associated to a smooth function f on the phase space
R2n:

Ω(f) :=
∫

R2n

f̌(ξ, η) e
i
�
(P ·ξ+Q·η)dnξ dnη,

where f̌ is the inverse Fourier transform of f , Pi and Qj are operators
satisfying the canonical commutation relations and the integral is taken
in the weak sense. The arising problem of finding an inverse formula
was solved shortly afterwards by Wigner [47], who gave a way to recover
the classical observable from the quantum one taking the symbol of
the operator. It was then Moyal [37] who interpreted the symbol of the
commutator of two operators corresponding to the functions f and g as
what is now called a Moyal bracket M:

M(f, g) =
sinh(ε P )

ε
(f, g) =

∞∑
k=0

ε2k

(2k + 1)!
P 2k+1(f, g),
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where ε = i�
2 and P k is the k-th power of the Poisson bracket on

C∞(R2n
)
. A similar formula for the symbol of a product Ω(f)Ω(g) had

already been found by Groenewold [25] and can now be interpreted as
the first appearance of the Moyal star product �, in terms of which the
above bracket can be rewritten as

M(f, g) =
1
2ε

(f � g − g � f).

However, it was not until Flato gave birth to his program for de-
formation quantization that this star product was recognized as a non
commutative deformation of the (commutative) pointwise product on
the algebra of functions. This led to the first paper [20] in which the
problem was posed of giving a general recipe to deform the product in
C∞(M) in such a way that 1

2ε (f �g−g�f) would still be a deformation of
the given Poisson structure on M . Shortly afterward Vey [45] extended
the first approach, which considered only 1-differentiable deformation,
to more general differentiable deformations, rediscovering in an indepen-
dent way the Moyal bracket. This opened the way to subsequent works
([21] and [5]) in which quantum mechanics was formulated as a defor-
mation (in the sense of Gerstenhaber theory) of classical mechanics and
the first significant applications were found.

The first proof of the existence of star products on a generic sym-
plectic manifold was given by DeWilde and Lecomte [16] and relies on
the fact that locally any symplectic manifold of dimension 2n can be
identified with R2n via a Darboux chart. A star product can thus be
defined locally by the Moyal formula and these local expressions can be
glued together by using cohomological arguments.

A few years later and independently of this previous result, Fedosov
[19] gave an explicit algorithm to construct star products on a given
symplectic manifold: starting from a symplectic connection on M , he
defined a flat connection D on the Weyl bundle associated to the mani-
fold, to which the local Moyal expression for � is extended; the algebra
of (formal) functions on M can then be identified with the subalgebra
of horizontal sections w.r.t. D. We refer the reader to Fedosov’s book
for the details. This provided a new proof of existence which could be
extended to regular Poisson manifolds and opened the way to further
developments.

Once the problem of existence was settled, it was natural to focus on
the classification of equivalent star products, where the equivalence of
two star products has to be understood in the sense that they give rise
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to the same algebra up to the action of formal automorphisms which are
deformations of the identity. Several authors came to the same classifica-
tion result using very different approaches, confirming what was already
in the seminal paper [5] by Flato et al. namely that the obstruction to
equivalence lies in the second de Rham cohomology of the manifold M .
For a comprehensive enumeration of the different proofs we address the
reader to [17].

The ultimate generalization to the case of a generic Poisson manifold
relies on the formality theorem Kontsevich announced in [33] and sub-
sequently proved in [34]. In this last work he derived an explicit formula
for a star product on Rd, which can be used to define it locally on any M .
Finally, Cattaneo, Felder and Tomassini [13] gave a globalization pro-
cedure to realize explicitly what Kontsevich proposed, thus completing
the program outlined some thirty years before by Flato.

For a complete overview of the process which led from the origins of
quantum mechanics to this last result and over, we refer to the extensive
review given by Dito and Sternheimer in [17].

As a concluding remark, we would like to mention that the Kont-
sevich formula can also be expressed as the perturbative expression of
the functional integral of a topological field theory — the so-called Pois-
son sigma model ([29], [39]) — as Cattaneo and Felder showed in [11].
The diagrams Kontsevich introduced for his construction of the local
expression of the star product arise naturally in this context as Feyn-
man diagrams corresponding to the perturbative evaluation of a certain
observable.

1.3 Plan of the work

In the first Section we introduce the basic definition and properties of the
star product in the most general setting and give the explicit expression
of the Moyal product on R2d as an example. The equivalence relation
on star products is also discussed, leading to the formulation of the
classification problem.

In the subsequent Section we establish the relation between the ex-
istence of a star product on a given manifold M and the formality of
the (differential graded) Lie algebra D of multidifferential operators on
M . We introduce the main tools used in Kontsevich’s construction and
present the fundamental result of Hochschild, Kostant and Rosenberg
on which the formality approach is based.
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A brief digression follows, in which the formality condition is exam-
ined from a dual point of view. The equation that the formality map
from the (differential graded) Lie algebra V of multivector fields to D
must fulfill is rephrased in terms of an infinite family of equations on
the Taylor coefficients of the dual map.

In the third Section Kontsevich’s construction is worked out explicitly
and the formality theorem for Rd is proved following the outline given
in [34]. Finally, the result is generalized to any Poisson manifold M with
the help of the globalization procedure contained in [13].



2

The star product

In this Section we will briefly give the definition and main properties of
the star product.

Morally speaking, a star product is a formal non-commutative defor-
mation of the usual pointwise product of functions on a given manifold.
To give a more general definition, one can start with a commutative
associative algebra A with unity over a base ring K and deform it to an
algebra A[[ε]] over the ring of formal power series K[[ε]]. Its elements are
of the form

C =
∞∑

i=0

ci εi ci ∈ A

and the product is given by the Cauchy formula, multiplying the coeffi-
cients according to the original product on A( ∞∑

i=0

ai εi
)
•ε

( ∞∑
j=0

bj εj
)

=
∞∑

k=0

( k∑
l=0

ak−l · bl

)
εk

The star product is then a K[[ε]]-linear associative product � on A[[ε]]

which deforms this trivial extension •ε : A[[ε]] ⊗K[[ε]] A[[ε]] → A[[ε]] in the
sense that for any two v, w ∈ A[[ε]]

v � w = v •ε w mod ε.

In the following we will restrict our attention to the case in which A

is the Poisson algebra C∞(M) of smooth functions on M endowed with
the usual pointwise product

f · g(x) := f(x) g(x) ∀x ∈ M

and K is R.
With these premises we can give the following
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88 2 The star product

Definition 2.1 A star product on M is an R[[ε]]-bilinear map

C∞(M)[[ε]]× C∞(M)[[ε]] → C∞(M)[[ε]]
(f, g) �→ f � g

such that

i) f � g = f · g +
∑∞

i=1 Bi(f, g) εi,
ii) (f � g) � h = f � (g � h) ∀f, g, h ∈
C∞(M) (associativity),

iii) 1 � f = f � 1 = f ∀f ∈ C∞(M).

The Bi could in principle be just bilinear operators, but, in order to
encode locality from a physical point of view, one requires them to be
bidifferential operators on C∞(M) of globally bounded order, that is,
bilinear operators which moreover are differential operators w.r.t. each
argument; writing the i-th term in local coordinates:

Bi(f, g) =
∑
K,L

βKL
i ∂Kf ∂Lg

where the sum runs over all multi-indices K = (k1, . . . , km) and L =
(l1, . . . , ln) of any length m,n ∈ N and the usual notation for higher
order derivatives is applied; the βKL

i ’s are smooth functions, which are
non-zero only for finitely many choices of the multi-indices K and L.

Example 2.2 The Moyal star product
We have already introduced the Moyal star product as the first ex-

ample of a deformed product on the algebra of functions on R2d en-
dowed with the canonical symplectic form. Choosing Darboux coordi-
nates (q, p) = (q1, . . . , qd, p1, . . . , pd) we can now give an explicit formula
for the product of two functions f, g ∈ C∞(R2d

)
:

f � g (q, p) := f(q, p) exp
(

i
�
2

(←−
∂ q
−→
∂ p −

←−
∂ p
−→
∂ q

))
g(q, p),

where the
←−
∂ ’s operate on f and the

−→
∂ ’s on g; the parameter ε has

been replaced by the expression i�

2 that usually appears in the physical
literature.

More generally, given a constant skew-symmetric tensor {αij} on Rd

with i, j = 1, . . . , d, we can define a star product by:

f � g (x) = exp
(

i
�
2

αij ∂

∂xi

∂

∂yj

)
f(x) g(y)

∣∣∣
y=x

. (1)

We can easily check that such a star product is associative for any
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choice of αij

((f � g) � h) (x)

= e(i
�

2 αij ∂
∂ xi

∂

∂ z j )(f � g)(x)h(z)
∣∣∣
x=z

= e

(
i �

2 αij ( ∂

∂ xi + ∂

∂ y i ) ∂

∂ z j

)
e

(
i �

2 αk l ∂

∂ xk
∂

∂ y l

)
f(x)g(y)h(z)

∣∣∣
x=y=z

= e

(
i �

2 αij ∂
∂ xi

∂

∂ z j +αk l ∂

∂ y k
∂

∂ z l +αm n ∂
∂ xm

∂
∂ y n

)
f(x)g(y)h(z)

∣∣∣
x=y=z

= e

(
i �

2 αij ∂
∂ xi ( ∂

∂ y j + ∂

∂ z j )
)
e

(
i �

2 αk l ∂

∂ y k
∂

∂ z l

)
f(x)g(y)h(z)

∣∣∣
x=y=z

= (f � (g � h)) (x).

Point i) and iii) in Definition (2.1) and the R[[ε]]-linearity can be checked
as well directly from the formula (1).

We would like to emphasize that condition iii) in the Definition 2.1
implies that the degree 0 term in the r.h.s. of i) has to be the usual
product and it moreover ensures that the Bi’s are bidifferential operators
in the strict sense, i.e. they have no term of order 0

Bi(f, 1) = Bi(1, f) = 0 ∀i ∈ N0. (2)

As another consequence of the previous requirements on the Bi’s, it
is straightforward to prove that the skew-symmetric part B

−
1 of the first

bidifferential operator, defined by

B
−
1 (f, g) :=

1
2

(
B1(f, g)−B1(g, f)

)
satisfies the following equations:

- B
−
1 (f, g) = −B

−
1 (g, f),

- B
−
1 (f, g · h) = g ·B−

1 (f, h) + B
−
1 (f, g) · h,

- B
−
1 (B−

1 (f, g), h) + B
−
1 (B−

1 (g, h), f) + B
−
1 (B−

1 (h, f), g) = 0.

A bilinear operator on C∞(M) which satisfies these three identities is
called a Poisson bracket. A smooth manifold M endowed with a Poisson
bracket on the algebra of smooth functions is called a Poisson manifold

(see also [9] and references therein).
It is therefore natural to look at the inverse problem: given a Poisson

manifold M , can we define an associative, but possibly non commutative,
product � on the algebra of smooth functions, which is a deformation of
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the pointwise product and such that

f � g − g � f

ε
mod ε = { f , g }

for any pair of functions f, g ∈ C∞(M)?
In order to reduce an irrelevant multiplicity of solutions, the problem

can be brought down to the study of equivalence classes of such products,
where the equivalence is to be understood in the sense of the following

Definition 2.3 Two star products � and �′ on C∞(M) are said to be
equivalent iff there exists a linear operator D : C∞(M)[[ε]] → C∞(M)[[ε]]
of the form

Df := f +
∞∑

i=1

Di(f) εi

such that

f �′ g = D−1 (Df �Dg) (3)

where D−1 has to be understood as the inverse in the sense of formal
power series.

It follows from the very definition of star product that also the Di’s have
to be differential operators which vanish on constants, as was shown in
[27] (and without proof in [45]).

This notion of equivalence leads immediately to a generalization of
the previously stated problem, according to the following

Lemma 2.4 In any equivalence class of star products, there exists a
representative whose first term B1 in the ε expansion is skew-symmetric.

Proof Given any star product

f � g := f · g + ε B1(f, g) + ε2B2(f, g) + · · ·

we can define an equivalent star product as in (3) with the help of a
formal differential operator

D = id +ε D1 + ε2D2 + · · · .

The condition for the first term of the new star product to be skew-
symmetric B′

1(f, g) + B′
1(g, f) = 0 gives rise to an equation for the first

term of the differential operator

D1(f g) = D1f g + f D1g +
1
2

(
B1(f, g) + B1(g, f)

)
, (4)
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which can be used to define D1 locally on polynomials and hence by
completion on any smooth function. By choosing a partition of unity,
we may finally apply D1 to any smooth function on M .

We can start by choosing D1 to vanish on linear functions. Then the
equation (4) defines uniquely the action of D1 on quadratic terms, given
by the symmetric part B+

1 of the bilinear operator B1:

D1(xixj) = B+
1 (xi, xj) :=

1
2

(
B1(xi, xj) + B1(xj , xi)

)
.

where {xk} are local coordinates on the manifold M . The process ex-
tends to any monomial and — as a consequence of the associativity of �

— gives rise to a well defined operator since it does not depend on the
way we group the factors. We check this on a cubic term:

D1((xixj)xk) = D1(xixj)xk + xixj D1(xk) + B+
1 (xixj , xk)

= B+
1 (xi, xj)xk + B+

1 (xixj , xk)

= B+
1 (xi, xjxk) + xi B+

1 (xj , xk)

= xi D1(xjxk) + D1(xi)xjxk + B+
1 (xi, xjxk)

= D1(xi (xjxk)).

The equality between the second and the third lines is a consequence of
the associativity of the star product: it is indeed the term of order ε in
(xi � xj) � xk = xi � (xj � xk) once we restrict the operators appearing
on both sides to their symmetric part.

The above proof is actually a particular case of the Hochschild–
Kostant–Rosenberg theorem. Associativity implies in fact that B+

1 is
a Hochschild cocycle, while in (4) we want to express it as a Hochschild
coboundary: the HKR theorem states exactly that this is always possible
on Rd and thus locally on any manifold.

From this point of view, the natural subsequent step is to look for the
existence and uniqueness of equivalence classes of star products which
are deformations of a given Poisson structure on the smooth manifold M .
As already mentioned in the introduction, the existence of such products
was first proved by DeWilde and Lecomte [16] in the symplectic case,
where the Poisson structure is defined via a symplectic form (a non
degenerate closed 2-form). Independently of this previous result, Fedosov
[19] gave an explicit geometric construction: the star product is obtained
“glueing” together local expressions obtained via the Moyal formula.

As for the classification, the role played by the second de Rham coho-
mology of the manifold, whose occurrence in connection with this prob-
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lem can be traced back to [5], has been clarified in subsequent works
by different authors ([38], [6], [26], [48], [7], [15]) until it came out that
equivalence classes of star products on a symplectic manifold are in one-
to-one correspondence with elements in H2

dR(M)[[ε]].
The general case was solved by Kontsevich in [34], who gave an ex-

plicit recipe for the construction of a star product starting from any
Poisson structure on Rd. This formula can thus be used to define locally
a star product on any Poisson manifold; the local expressions can be
once again glued together to obtain a global star product, as explained
in Section 6. As already mentioned, this result is a straightforward con-
sequence of the formality theorem, which was already announced as a
conjecture in [33] and subsequently proved in [34]. In the following, we
will review this stronger result which relates two apparently very dif-
ferent mathematical objects — multivector fields and multidifferential
operators — and we will come to the explicit formula as a consequence
in the end.

As a concluding act, we anticipate the Kontsevich formula even
though we will fully understand its meaning only in the forthcoming
Sections.

f � g := f · g +
∞∑

n=1

εn
∑

Γ∈Gn ,2

wΓ BΓ(f, g) (5)

The bidifferential operators as well as the weight coefficients are indexed
by the elements Γ of a suitable subset Gn,2 of the set of graphs on n+ 2
vertices, the so-called admissible graphs.



3

Rephrasing the main problem: the formality

In this Section we introduce the main tools that we will need to review
Kontsevich’s construction of a star product on a Poisson manifold.

The problem of classifying star products on a given Poisson manifold
M is solved by proving that there is a one-to-one correspondence between
equivalence classes of star products and equivalence classes of formal
Poisson structures.

While the former were defined in the previous Section, the equivalence
relation on the set of formal Poisson structures is defined as follows. First
of all, to give a Poisson structure on M is the same as to choose a Poisson

bivector field, i.e. a section π of
∧2 TM with certain properties that we

will specify later, and define the Poisson bracket via the pairing between
(exterior powers of the) tangent and cotangent space:

{ f , g } :=
1
2
〈π , df ∧ dg 〉 ∀f, g ∈ C∞(M).

(6)
The set of Poisson structures is acted on by the group of diffeomor-

phisms of M , the action being given through the push-forward by

πφ := φ∗π. (7)

To extend this notion to formal power series, we can introduce a
bracket on C∞(M)[[ε]] by:

{ f , g }ε :=
∞∑

m=0

εm
m∑

i,j,k=0

i+j+k=m

〈πi , dfj ∧ dgk 〉 (8)

93
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where

f =
∞∑

j=0

εjfj and g =
∞∑

k=0

εkgk

One says that

πε := π0 + π1 ε + π2 ε2 + · · ·

is a formal Poisson structure if { , }ε is a Lie bracket on C∞(M)[[ε]].
The gauge group in this case is given by formal diffeomorphisms, i.e.

formal power series of the form

φε := exp(εX)

where X :=
∑∞

k=0 εkXk is a formal vector field, i.e. a formal power series
whose coefficients are vector fields. This set is given the structure of
a group defining the product of two such exponentials via the Baker–
Campbell–Hausdorff formula:

exp(εX) · exp(εY) := exp(ε X + ε Y +
1
2
ε [ X , Y ] + · · · ). (9)

The action which generalizes (7) is then given via the Lie derivatives L
on bivector fields by

exp (ε X)∗ π :=
∞∑

m=0

εm
m∑

i,j,k=0

i+j+k=m

(LXi )
jπk (10)

Kontsevich’s main result in [34] was to find an identification between
the set of star products modulo the action of the differential operators
defined in (2.3) and the set of formal Poisson structure modulo this
gauge group. (For further details the reader is referred to [1] and [36].)

3.1 DGLA’s, L∞- algebras and deformation
functors

In the classical approach to deformation theory, (see e.g [2]) to each
deformation is attached a DGLA via the solutions to the Maurer–Cartan
equation modulo the action of a gauge group. The first tools we need to
approach our problem are then contained in the following definitions.

Definition 3.1 A graded Lie algebra (briefly GLA) is a Z-graded vector
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space g =
⊕

i∈Z
gi endowed with a bilinear operation

[ , ] : g⊗ g → g

satisfying the following conditions:

a) [ a , b ] ∈ gα+β (homogeneity)
b) [ a , b ] = −(−)αβ [ b , a ] (skew-symmetry)
c) [ a , [ b , c ] ] = [ [ a , b ] , c ] + (−)αβ [ b , [ a , c ] ] (Jacobi identity)

for any a ∈ gα, b ∈ gβ and c ∈ gγ

As an example we can consider any Lie algebra as a GLA concentrated
in degree 0. Conversely, for any GLA g, its degree zero part g0 (as well
as the even part geven :=

⊕
i∈Z

g2i) is a Lie algebra in the usual sense.

Definition 3.2 A differential graded Lie algebra is a GLA g together with
a differential, d : g → g, i.e. a linear operator of degree 1 (d: gi → gi+1)
which satisfies the Leibniz rule

d[ a , b ] = [ d a , b ] + (−)α[ a , d b ] a ∈ gα, b ∈ gβ

and squares to zero (d ◦ d = 0).

Again we can make any Lie algebra into a DGLA concentrated in degree
0 with trivial differential d = 0. More examples can be found for instance
in [36]. In the next Section we will introduce the two DGLA’s that play
a role in deformation quantization.

The categories of graded and differential graded Lie algebras are com-
pleted with the natural notions of morphisms as graded linear maps
which moreover commute with the differentials and the brackets1. Since
we have a differential, we can form a cohomology complex out of any
DGLA defining the cohomology of g as

Hi(g) := Ker(d: gi → gi+1)
/

Im(d: gi−1 → gi).

The set H :=
⊕

iHi(g) has a natural structure of graded vector space
and, because of the compatibility condition between the differential d
and the bracket on g, it inherits the structure of a GLA, defined unam-
biguously on equivalence classes |a|, |b| ∈ H by:

[ |a| , |b| ]H :=
∣∣∣[ a , b ]

g

∣∣∣ .
1 We recall that a graded linear map φ : g → h of degree k is a linear map such that

φ(gi) ⊂ hi+k ∀i ∈ N. We remark that, in the case of DGLA’s, a morphism has to
be a degree 0 linear map in order to commute with the other structures.
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Finally, the cohomology of a DGLA can itself be turned into a DGLA
with zero differential.

It is evident that every morphism φ : g1 → g2 of DGLA’s induces
a morphism H(φ) : H1 → H2 between cohomologies. Among these, we
are particularly interested in the so-called quasi-isomorphisms, i.e. mor-
phisms of DGLA’s inducing isomorphisms in cohomology. Such maps
generate an equivalence relation: two DGLA’s g1 and g2 are called quasi-

isomorphic if they are equivalent under this relation.2

Definition 3.3 A differential graded Lie algebra g is called formal if it
is quasi-isomorphic to its cohomology, regarded as a DGLA with zero
differential and the induced bracket.

The main result of Kontsevich’s work — the formality theorem con-
tained in [34] – was to show that the DGLA of multidifferential operators,
which we are going to introduce in the next Section, is formal.

In order to achieve this goal, however, one has to rephrase the problem
in a broader category, which we will define in this Section, though its
structure will become clearer in Chapter 4, where it will be analyzed
from a dual point of view.

To introduce the notation that will be useful throughout, we start
from the very basic definitions.

Definition 3.4 A graded coalgebra (briefly GCA in the following) on
the base ring K is a Z-graded vector space h =

⊕
i∈Z

hi endowed with a
comultiplication, i.e. a graded linear map

∆: h → h⊗ h

such that

∆(hi) ⊂
⊕

j+k=i

hj ⊗ hk

and which moreover satisfies the coassociativity condition

(∆⊗ id)∆(a) = (id⊗∆)∆(a)

for every a ∈ h. It is said to be with counit if there exists a morphism

ε : h → K

2 We want to stress the fact that the existence of a quasi-isomorphism φ : g1 → g2

does not imply the existence of a “quasi-inverse” φ−1 : g2 → g1: therefore these
maps do not define automatically an equivalence relation. This is the main reason
why we have to consider the broader category of L∞-algebras.
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such that ε(hi) = 0 for any i > 0 and

(ε⊗ id)∆(a) = (id⊗ε)∆(a) = a

for every a ∈ h. It is said to be cocommutative if

T ◦∆ = ∆

where T : h⊗ h → h⊗ h is the twisting map, defined on a product x⊗ y

of homogeneous elements of degree respectively |x| and |y| by

T(x⊗ y) := (−)|x||y| y ⊗ x

and extended by linearity.

Given a (graded) vector space V over K, we can define new graded
vector spaces over the same ground field by:

T (V ) :=
⊕∞

n=0 V ⊗n

T (V ) :=
⊕∞

n=1 V ⊗n

V ⊗n :=

 V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

n ≥ 1

K n = 0
,

(11)
and turn them into associative algebras w.r.t. the tensor product. T (V )
has also a unit given by 1 ∈ K. They are called respectively the tensor

algebra and the reduced tensor algebra. As a graded vector space, T (V )
can be endowed with a coalgebra structure defining the comultiplication
∆T on homogeneous elements by:

∆T (v1⊗ · · · ⊗vn) := 1⊗ (v1⊗ · · · ⊗vn)

+
j=n−1∑

j=1

(v1⊗ · · · ⊗vj)⊗ (vj+1⊗ · · · ⊗vn)

+ (v1⊗ · · · ⊗vn)⊗ 1

and the counit εT as the canonical projection εT : T (V ) → V ⊗0 = K.

The projection T (V ) π→ T (V ) and the inclusion T (V )
i

↪→ T (V ) induce
a comultiplication also on the reduced algebra, which gives rise to a
coalgebra without counit.

The tensor algebra gives rise to two other special algebras, the sym-

metric S(V ) and exterior Λ(V ) algebras, defined as vector spaces as the
quotients of T (V ) by the two-sided ideals — respectively IS and IΛ —
generated by homogeneous elements of the form v ⊗ w − T(v ⊗ w) and
v⊗w+T(v⊗w). These graded vector spaces inherit the structure of as-
sociative algebras w.r.t. the tensor product. The reduced versions S(V )
and Λ(V ) are defined replacing T (V ) by the reduced algebra T (V ).
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Also in this case, the underlying vector spaces can be endowed with a
comultiplication which gives them the structure of coalgebras (without
counit in the reduced cases). In particular on S(V ) the comultiplication
is given on homogeneous elements v ∈ V by

∆S(v) := 1⊗ v + v ⊗ 1,

and extended as an algebra homomorphism w.r.t. the tensor product.
All the usual additional structures that can be put on an algebra

can be dualized to give a dual version on coalgebras. Having in mind the
structure of DGLA’s we introduce the analog of a differential by defining
first coderivations.

Definition 3.5 A coderivation of degree k on a GCA h is a graded linear
map δ : hi → hi+k which satisfies the (co–)Leibniz identity:

∆δ(v) = (δ ⊗ id)∆(v) + ((−)k|v| id⊗δ)∆(v) ∀v ∈ h|v|

A differential Q on a coalgebra is a coderivation of degree one that squares
to zero.

With these premises, we can give the definition of the main object we
will deal with.

Definition 3.6 An L∞-algebra is a graded vector space g on K endowed
with a degree 1 coalgebra differential Q on the reduced symmetric space
S(g[1]).3 An L∞-morphism F : (g, Q) → (g̃, Q̃) is a morphism

F : S(g[1]) −→ S(g̃[1])

of graded coalgebras (sometimes called a pre-L∞-morphism), which
moreover commutes with the differentials (FQ = Q̃F ).

As in the dual case an algebra morphism f : S(A) → S(A) (resp. a
derivation δ : S(A) → S(A)) is uniquely determined by its restriction
to the algebra A = S1(A) because of the homomorphism condition
f(ab) = f(a)f(b) (resp. the Leibniz rule), an L∞-morphism F and a
coderivation Q are uniquely determined by their projection onto the first

3 We recall that given any graded vector space g, we can obtain a new graded
vector space g[k] by shifting each component by k, i.e.

g[k] =
⊕
i∈Z

g[k]i where g[k]i := gi+k .



3.1 DGLA’s, L∞- algebras and deformation functors 99

component F 1 resp. Q1. It is useful to generalize this notation introduc-
ing the symbol F i

j (resp. Qi
j) for the projection to the i-th component of

the target vector space restricted to the j-th component of the domain
space.4 With this notation, we can express in a more explicit way the
condition which F (resp. Q) has to satisfy to be an L∞-morphism (resp.
a differential). Since, with the above notation, QQ, FQ and Q̃F are
coderivations (as it can be checked by a straightforward computation),
it is sufficient to verify these conditions on their projection to the first
component.

We deduce that a coderivation Q is a differential iff
n∑

i=1

Q1
i Q

i
n = 0 ∀n ∈ N0 (12)

while a morphism F of graded coalgebras is an L∞-morphism iff
n∑

i=1

F 1
i Qi

n =
n∑

i=1

Q̃1
i F

i
n ∀n ∈ N0. (13)

In particular, for n = 1 we have

Q1
1Q

1
1 = 0 and F 1

1 Q1
1 = Q̃1

1F
1
1 ;

therefore every coderivation Q induces the structure of a complex of
vector spaces on g and every L∞-morphism restricts to a morphism
of complexes F 1

1 . We can thus generalize the definitions given for a
DGLA to this case, defining a quasi-isomorphism of L∞-algebras to be
an L∞-morphism F such that F 1

1 is a quasi-isomorphism of complexes.
The notion of formality can be extended in a similar way. We quote a
result on L∞-quasi-isomorphisms we will need later, which follows from
a classification theorem on L∞-algebras.

Lemma 3.7 Let F : (g, Q) → (g̃, Q̃) be an L∞-morphism. If F is a
quasi-isomorphism it admits a quasi-inverse, i.e. there exists an L∞-mor-
phism G : (g̃, Q̃) → (g, Q) which induces the inverse isomorphism in the
corresponding cohomologies.

For a complete proof of this Lemma together with an explicit ex-
pression of the quasi-inverse and a discussion of the above mentioned
classification theorem we refer the reader to [10].

4 With the help of this decomposition, it can be showed that for any given j, only
finitely many F i

j (and analogously Qi
j ) are non trivial, namely F i

j = 0 for i > j.

For an explicit formula we refer the reader to [24] and [10].
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In particular, Lemma 3.7 implies that L∞-quasi-isomorphisms define
an equivalence relation, i.e. two L∞-algebras are L∞-quasi-isomorphic
iff there is an L∞-quasi-isomorphism between them. This is considerably
simpler than in the case of DGLA’s, where the equivalence relation is
only generated by the corresponding quasi-isomorphisms, and explains
finally why L∞-algebras are a preferred tool in the solution of the prob-
lem at hand.

Example 3.8 To clarify in what sense we previously introduced L∞-al-
gebras as a generalization of DGLA’s, we will show how to induce an
L∞-algebra structure on any given DGLA g.

We have already a suitable candidate for Q1
1, since we know that it

fulfills the same equation as the differential d: we may then define Q1
1

to be a multiple of the differential. If we write down explicitly (12) for
n = 2, we get:

Q1
1 Q1

2 + Q1
2 Q2

2 = 0;

since every Qi
j can be expressed in term of a combination of products

of some Q1
k, Q2

2 must be a combination of Q1
1 acting on the first or on

the second argument of Q1
2 (for an explicit expression of the general case

see [24]). Identifying Q1
1 with d (up to a sign), the above equation has

thus the same form as the compatibility condition between the bracket
[ , ] and the differential and suggests that Q1

2 should be defined in terms
of the Lie bracket. A simple computation points out the right signs, so
that the coderivation is completely determined by

Q1
1(a) := (−)αda a ∈ gα,

Q1
2(b c) := (−)β(γ−1)[ b , c ] b ∈ gβ , c ∈ gγ ,

Q1
n = 0 ∀n ≥ 3.

The only other equation involving non trivial terms follows from (12)
when n = 3:

Q1
1 Q1

3 + Q1
2 Q2

3 + Q1
3 Q3

3 = 0.

Inserting the previous definition and expanding Q2
3 in terms of Q1

2 we
get

(−)(α+β)(γ−1)
[
(−)α(β−1)[ a , b ] , c

]
+

(−)(α+γ)(β−1)(−)(γ−1)(β−1)
[
(−)α(γ−1)[ a , c ] , b

]
+

(−)(β+γ)(α−1)(−)(β+γ)(α−1)
[
(−)β(γ−1)[ b , c ] , a

]
= 0,

(14)
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which, after a rearrangement of the signs, turns out to be the (graded)
Jacobi identity.

According to the same philosophy, a DGLA morphism F : g → g̃

induces an L∞-morphism F which is completely determined by its first
component F

1

1 := F . In fact, the only two non trivial conditions on F

coming from (13) with n = 0 resp. n = 1 are:

F
1

1Q
1
1(f) = Q̃1

1F
1

1(f) ⇔ F (d f) = d̃ F (f)

F
1

1Q
1
2(fg) + F

2

1Q
2
2(fg) =Q̃1

1F
2

1(fg) + Q̃1
2F

2

2(fg)

⇔ F
(
[ f , g ]

)
= [F (f) , F (g) ]

If we had chosen Q1
3 not to vanish, the identity (14) would have been

fulfilled up to homotopy, i.e. up to a term of the form

dρ(g, h, k)± ρ(dg, h, k)± ρ(g,dh, k)± ρ(g, h,dk),

where ρ : Λ3g → g[−1]; in this case g is said to have the structure of a
homotopy Lie algebra.

This construction can be generalized, introducing the canonical iso-
morphism between the symmetric and exterior algebra (usually called
décalage isomorphism5) to define for each n a multibracket of degree 2−n

[·, · · · , ·]n : Λng → g[2− n]

starting from the corresponding Q1
n. Equation (12) gives rise to an infi-

nite family of condition on these multibracket. A graded vector space g

together with such a family of operators is a strong homotopy Lie algebra

(SHLA).
To conclude this overview of the main tools we will need in the follow-

ing — and to give an account of the last term in the title of this Section
— we introduce now the Maurer–Cartan equation of a DGLA g:

d a +
1
2
[ a , a ] = 0 a ∈ g1, (15)

5 More precisely, the décalage isomorphism is given on the n-symmetric power of g

shifted by one by

decn : Sn(g[1]) → Λn(g)[n]

x1 · · ·xn �→ (−1)

∑n

i=1
(n−i)(|xi |−1)

x1 ∧ . . . ∧ xn ,

where the sign is chosen precisely to compensate for the graded antisymmetry of
the wedge product.
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which plays a central role in deformation theory, as will be exemplified
in next Section, in (17) and (22).

It is a straightforward application of the definition 3.1 to show that
the set of solutions to this equation is preserved under the action of any
morphism of DGLA’s and — as we will see in the next Section — of any
L∞-morphism between the corresponding L∞-algebras.

There is another group which preserve the solutions to the Maurer–
Cartan equation, namely the gauge group that can be defined canonically
starting from the degree zero part of any formal DGLA.

It is a basic result of Lie algebra theory that there exists a functor exp
from the category of nilpotent Lie algebras to the category of groups.
For every such Lie algebra g, the set defined formally as exp(g) can
be endowed with the structure of a group defining the product via the
Baker–Campbell–Hausdorff formula as in (9); the definition is well-posed
since the nilpotency ensures that the infinite sum reduces to a finite one.

In the case at hand, generalizing what was somehow anticipated in
(9), we can introduce the formal counterpart g[[ε]] of any DGLA g defined
as a vector space by g[[ε]] := g ⊗ K[[ε]] and show that it has the natural
structure of a DGLA. It is clear that the degree zero part g0[[ε]] is a Lie
algebra, although non–nilpotent. Nevertheless, we can define the gauge
group formally as the set G := exp(ε g0[[ε]]) and introduce a well–defined
product taking the Baker–Campbell–Hausdorff formula as the definition
of a formal power series. Finally, the action of the group on ε g1[[ε]] can
be defined generalizing the adjoint action in (9). Namely:

exp(ε g)a :=
∞∑

n=0

(ad g)n

n!
(a)−

∞∑
n=0

(ad g)n

(n + 1)!
(dg)

= a + ε [ g , a ]− ε dg + o(ε2)

for any g ∈ g0[[ε]] and a ∈ g1[[ε]].
It is a straightforward computation to show that this action preserves

the subset MC(g) ⊂ ε g1[[ε]] of solutions to the (formal) Maurer–Cartan
equation.

3.2 Multivector fields and multidifferential
operators

As we already mentioned, a Poisson structure is completely defined by
the choice of a bivector field satisfying certain properties; on the other
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hand a star product is specified by a family of bidifferential operators. In
order to work out the correspondence between these two objects, we are
finally going to introduce the two DGLA’s they belong to: multivector
fields V and multidifferential operators D.

3.2.1 The DGLA V
A k-multivector field X is a Section of the k-th exterior power

∧k TM

of the tangent space TM ; choosing local coordinates {xi}i=1,...,dim M

and denoting by {∂i}i=1,...,dim M the corresponding basis of the tangent
space:

X =
dim M∑

i1,...,ik =1

Xi1···ik (x) ∂i1 ∧ · · · ∧ ∂ik
.

The direct sum of such vector spaces has thus the natural structure of
a graded vector space

Ṽ :=
∞⊕

i=0

Ṽi Ṽi :=
{

C∞(M) i = 0
Γ(
∧i TM) i ≥ 1

,

having added smooth functions in degree 0.
The most natural way to define a Lie structure on Ṽ is by extending

the usual Lie bracket on vector fields given in terms of the Lie derivative
w.r.t. the first vector field:

[ X , Y ] := LXY.

The same definition can be applied to the case when the second argument
is a function, setting:

[ X , f ] := LX(f) =
dim M∑

i=1

Xi ∂f

∂xi
.

where we have given also an explicit expression in local coordinates.
Setting then the Lie bracket of any two functions to vanish makes Ṽ0⊕Ṽ1

into a GLA.
Then we define the bracket between a vector field X and a homoge-

neous element Y1 ∧ . . . ∧ Yk ∈ Ṽk with k > 1 by the following formula:

[ X , Y1 ∧ . . . ∧ Yk ] :=
k∑

i=1

(−)i+1[ X , Yi ] ∧ Y1 ∧ . . . ∧ Ŷi ∧ . . . ∧ Yk,

where the bracket on the r.h.s. is just the usual bracket on Ṽ1; we can
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then extend it to the case of two generic multivector fields by requiring
it to be linear, graded commutative and such that for any X ∈ Ṽk,
adX := [X , · ] is a derivation of degree k − 1 w.r.t. the wedge product.

Finally, by iterated application of the Leibniz rule, we can find also
an explicit expression for the case of a function and a k-vector field:

[ X1 ∧ · · · ∧ Xk , f ] :=
k∑

i=1

(−)k−i LXi (f) X1 ∧ · · · ∧ X̂i ∧ · · · ∧ Xk

and two homogeneous multivector fields of degree greater than 1:

[ X1 ∧ · · · ∧ Xk , Y1 ∧ · · · ∧ Yl ] :=
k∑

i=1

l∑
j=1

(−)i+j [ Xi , Yj ] ∧ X1 ∧ · · · ∧ X̂i ∧ · · · ∧ Xk ∧

∧ Y1 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yl.

With the help of these formulae, we can finally check that the bracket
defined so far satisfies also the Jacobi identity. We give here a sketch
proof: to simplify the notation the wedge product has not been explicitly
written, a small caret V̂i represents the i-th component of the missing
vector field V and θa

b is equal to 1 if a > b and zero otherwise.
Given any three multivector fields X, Y and Z of positive degree n, l

and m respectively:

[ X , [ Y , Z ] ] =
l,m∑
i,j

(−)i+j

[
X , [ Yi , Zj ] Ŷ

i
Ẑ
j

]

=
l,m,n∑
i,j,k

(−)i+j+k+1[Xk, [Yi,Zj ]] X̂
k

Ŷ
i

Ẑ
j

+
l,m,n∑

i,j,k,r 	=i

(−)i+j+k+r+θr
i [Xk,Yr][Yi,Zj ] X̂

k
Ŷ
i,r

Ẑ
j

+
l,m,n∑

i,j,k,s 	=j

(−)i+j+k+s+l−1+θs
l [Xk,Zs][Yi,Zj ] X̂

k
Ŷ
i

Ẑ
j,s

=
l,m,n∑
i,j,k

(−)i+j+k+1
(
[[Xk,Yi],Zj ] X̂

k
Ŷ
i

Ẑ
j

+ (−)(n+1)(l+1)[Yi, [Xk,Zj ]] Ŷ
i

X̂
k

Ẑ
j

)
+ · · ·

= [ [ X , Y ] , Z ] + (−)(n+1)(l+1) [ Y , [ X , Z ] ]
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Analogous computations show that the Jacobi identity is fulfilled also in
the case when one or two of the multivector fields is of degree 0, while
in the case of three functions the identity becomes trivial.

This inductive recipe to construct a Lie bracket out of its action on
the components of lowest degree of the GLA together with its defining
properties completely determines the bracket on the whole algebra, as
the following proposition summarizes.

Proposition 3.9 There exists a unique extension of the Lie bracket on
Ṽ0 ⊕ Ṽ1 — called Schouten–Nijenhuis bracket — onto the whole Ṽ

[ , ]
SN

: Ṽk ⊗ Ṽ l → Ṽk+l−1

for which the following identities hold:

i) [ X , Y ]
SN

= −(−)(x+1)(y+1) [ Y , X ]
SN

ii) [ X , Y ∧ Z ]
SN

= [ X , Y ]
SN
∧ Z + (−)(y+1)z Y ∧ [ X , Z ]

SN

iii)
[
X , [ Y , Z ]

SN

]
SN

=
[
[ X , Y ]

SN
, Z

]
SN

+

(−)(x+1)(y+1)
[
Y , [ X , Z ]

SN

]
SN

for any triple X,Y and Z of degree resp. x, y and z.

The sign convention adopted thus far is the original one, as can be
found for instance in the seminal paper [5]. In order to recover the signs
we introduced in 3.1, we have to shift the degree of each element by one,
defining the graded Lie algebra of multivector fields V as

V :=
∞⊕

i=−1

Vi Vi := Ṽi+1 i = −1, 0, . . . , (16)

which in a shorthand notation is indicated by V := Ṽ[1], together with
the above defined Schouten–Nijenhuis bracket.

The GLA V is then turned into a differential graded Lie algebra set-
ting the differential d : V → V to be identically zero.

We now turn our attention to the particular class of multivector fields
we are most interested in: Poisson bivector fields. We recall that given
a bivector field π ∈ V1, we can uniquely define a bilinear bracket { , }
as in (6), which is by construction skew-symmetric and satisfies Leibniz
rule. The last condition for { , } to be a Poisson bracket — the Jacobi
identity — translates into a quadratic equation on the bivector field,
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which in local coordinates is:

{ { f , g } , h }+ { { g , h } , f }+ { {h , f } , g } = 0
�

πij ∂jπ
kl ∂if ∂kg ∂lh + πij ∂jπ

kl ∂ig ∂kh ∂lf + πij ∂jπ
kl ∂ih ∂kf ∂lg = 0

�
πij ∂jπ

kl ∂i ∧ ∂k ∧ ∂l = 0

The last line is nothing but the expression in local coordinates of the
vanishing of the Schouten–Nijenhuis bracket of π with itself. If we finally
recall that we defined V to be a DGLA with zero differential, we see that
Poisson bivector fields are exactly the solutions to the Maurer–Cartan
equation (15) on V

dπ +
1
2
[ π , π ]

SN
= 0, π ∈ V1. (17)

Finally, formal Poisson structures { , }ε are associated to a formal
bivector π ∈ εV1[[ε]] as in (8) and the action defined in (10) is exactly
the gauge group action in the sense of Section 3.1, since the formal
diffeomorphisms acting on { , }ε are generated by elements of V0[[ε]].

3.2.2 The DGLA D
The second DGLA that plays a role in the formality theorem is a sub-
algebra of the Hochschild DGLA, whose definition and main properties
we are going to review in what follows.

To any associative algebra with unit A on a field K we can associate
the complex of multilinear maps from A to itself.

C :=
∞∑

i=−1

Ci Ci := HomK(A⊗(i+1), A)

In analogy to what we have done for the case of multivector fields, we
shifted the degree by one in order to match our convention for the signs
that will appear in the definition of the bracket.

Having the case of linear operators in mind, on which the Lie algebra
structure arises from the underlying associative structure given by the
composition of operators, we try to extend this notion to multilinear
operators. Clearly, when composing an (m + 1)-linear operator φ with
an (n+1)-linear operator ψ we have to specify an inclusion A ↪→ A⊗(m+1)

to identify the target space of ψ with one of the component of the domain
of φ: loosely speaking we have to know where to plug in the output of ψ
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into the inputs of φ. We therefore define a whole family of compositions
{◦i} such that for φ and ψ as above

(φ ◦i ψ)(f0, . . . , fm+n) :=

φ(f0, . . . , fi−1, ψ(fi, . . . , fi+n), fi+n+1, . . . , fm+n)

for any (m + n + 1)-tuple of elements of A; this operation can be better
understood through the pictorial representation in Fig. 3.1.

n-1

i i+1

.....

... ......

(i)

mi

... ... ...

φ ψ φ ψ
i

0 01 1

0 1 m+n

i+n

n

i

.....

Figure 3.1 The i- composition.

We can further sum up with signs all the possible partial compositions
to find an “almost associative” product on C — in fact a pre-Lie structure
— given by

φ ◦ ψ :=
m∑

i=0

(−)niφ ◦i ψ

with the help of which we can give C the structure of a GLA.

Proposition 3.10 The graded vector space C together with the Ger-
stenhaber bracket [ , ]

G
: Cm ⊗ Cn → Cm+n defined (on homogeneous

elements) by

[ φ , ψ ]
G

:= φ ◦ ψ − (−)mnψ ◦ φ (18)

is a graded Lie algebra, called the Hochschild GLA.

Proof Since this bracket, introduced by Gerstenhaber in [23], is defined
as a linear combination of terms of the form φ◦i ψ and ψ◦i φ, it is clearly
linear and homogeneous by construction. The presence of the sign (−)mn

ensures that it is also (graded) skew-symmetric, since clearly

[ φ , ψ ]
G

= −(−)mn
(
ψ ◦ φ− (−)mnφ ◦ ψ

)
= −(−)mn[ ψ , φ ]

G

for any φ ∈ Cm and ψ ∈ Cn.
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As for the Jacobi identity, we have to prove that the following holds:[
φ , [ ψ , χ ]

G

]
G

=
[
[ φ , ψ ]

G
, χ

]
G

+ (−)mn
[
ψ , [ φ , χ ]

G

]
G

(19)

for any triple φ, ψ, χ of multilinear operator of degree resp. m, n and p.
Expanding the first term on r.h.s. of (19) we get(

φ ◦ ψ − (−)mnψ ◦ φ
)
◦ χ− (−)(m+n)pχ ◦

(
φ ◦ ψ − (−)mnψ ◦ φ

)
=

m,m+n∑
i,k=0

(−)
ni+kp (φ ◦i ψ) ◦k χ

−
n,m+n∑
j,k=0

(−)
m(j+n)+kp (ψ ◦j φ) ◦k χ

−
m,p∑

i,k=0

(−)
(m+n)(k+p)+ni χ ◦k (φ ◦i ψ)

+
n,p∑

j,k=0

(−)
(m+n)(k+p)+m(j+n) χ ◦k (ψ ◦j φ)

The first sum can be decomposed according to the following rule for
iterated partial compositions

(φ ◦i ψ) ◦k χ =


(φ ◦k χ) ◦i ψ k < i

φ ◦i (ψ ◦k−i χ) i ≤ k ≤ i + n

(φ ◦k−n χ) ◦i ψ i + n < k

in a term of the form
m∑
i

i≤k≤i+n

(−)
ni+kp φ ◦i (ψ ◦k−i χ) =

m,n∑
i,k=0

(−)
(n+p)i+kp φ ◦i (ψ ◦k χ),

whose sign matches the one of the corresponding term coming from (φ ◦
ψ)◦χ on the l.h.s, plus those terms in which the i-th and k-th composition
commute, which cancel with the corresponding terms coming from the
expansion of the second term of the r.h.s. of (19).

Upon application of the same procedure to the remaining terms, the
claim follows.

For a different approach refer to [44], where, after having identified
multilinear maps on A with graded coderivations of the free cocommuta-
tive coalgebra cogenerated by A as a module, the bracket is interpreted
as the commutator w.r.t. the composition of coderivations.
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Before introducing a differential on C, we have to pick out a particular
class of degree one linear operators. It is clear from the above definitions
that associative multiplications are elements of C1 which moreover satisfy
the associativity condition. Writing this equation explicitly in terms of
such an element m

(f · g) · h = f · (g · h) ⇔ m(m(f, g), h)−m(f,m(g, h)) = 0 (20)

we realize immediately that this is — up to a multiplicative factor —
the requirement that the Gerstenhaber bracket of m with itself vanishes,
since

[ m , m ]
G
(f, g, h) =

1∑
i=0

(−)i(m ◦i m)(f, g, h)

− (−)1
1∑

i=0

(−)i(m ◦i m)(f, g, h)

= 2
(
m(m(f, g), h)−m(f,m(g, h))

)
, (21)

as is shown in a pictorial way in Fig. 3.2

0

Figure 3.2 The associativity constraint

Now, for each element φ of degree k of a (DG) Lie algebra g, adφ :=
[ φ , ] is a derivation (of degree k), since the Jacobi identity can also be
written as:

adφ [ ψ , ξ ] = [ adφ ψ , ξ ] + (−)km[ ψ , adφ ξ ]

for any ψ ∈ gm and ξ ∈ gn. It is therefore natural to introduce the
Hochschild differential

dm : Ci → Ci+1

ψ �→ dmψ := [m , ψ ]
G
.

The only thing that we still have to check is that dm squares to zero,
which follows immediately from the Jacobi identity and the associativity
constraint on m expressed in terms of the Gerstenhaber bracket as shown
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in (20) and (21):

(dm ◦ dm)ψ =
[
m , [ m , ψ ]

G

]
G

=
[
[ m , m ]

G
, ψ

]
G
−
[
m , [ m , ψ ]

G

]
G

=

= −
[
m , [ m , ψ ]

G

]
G

⇔ d2
m = 0

So we have proved the following

Proposition 3.11 The GLA C together with the differential dm is a
differential graded Lie algebra.

We can also give an explicit expression of the action of the differential
on an element ψ ∈ Cn:

(dmψ)(f0, . . . , fn+1) =
n∑

i=0

(−)i+1ψ(f0, . . . , fi−1, fi · fi+1, . . . , fn+1)+

+ f0 · ψ(f1, . . . , fn+1) + (−)(n+1)ψ(f0, . . . , fn) · fn+1.

As we already mentioned, in the case A = C∞(M), what we are
actually interested in is not the whole Hochschild DGLA, but rather a
subalgebra of C: the DGLA of multidifferential operators D̃. It is defined
as a (graded) vector space as the collection D̃ :=

⊕
D̃i of the subspaces

D̃i ⊂ Ci consisting of differential operators acting on smooth functions
on M . It is an easy exercise to verify that D̃ is closed under Gerstenhaber
bracket and the action of dm and thus is a DGL subalgebra.

We stress the fact that D̃ also includes operators of order 0, i.e. loosely
speaking operators which “do not differentiate”: this way also the asso-
ciative product m is still an element of D̃1.

Having in mind the defining properties of the star product given in
Section 2 and in particular the requirement that Bi(1, f) = 0 ∀i ∈
N, f ∈ C∞(M), which ensures that the unity is preserved through de-
formation, we restrict our choice further, considering only differential
operators which vanish on constant functions; they build a new DGL
subalgebra D ⊂ D̃. We remark, however, that dm is no longer an inner
derivation when restricted to D, since clearly the multiplication does not
vanish on constants.

Finally, we want to work out also for this DGLA the role played by
the Maurer–Cartan equation: we will show that in this case this equation
encodes the associativity of the product.

Given an element B ∈ D1, we can interpret m + B as a deformation
of the original product. As shown in (20) and (21), the associativity
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constraint on m + B translates into

[ m + B , m + B ]
G

= 0

which in turn, since m is already associative and [m , B ]
G

= [ B , m ]
G

=
dmB gives exactly the desired Maurer–Cartan equation (15)

dmB +
1
2
[ B , B ]

G
= 0. (22)

Introducing the formal counterpart of D, it is clear that the deformed
product turns out to be nothing but a star product as in Definition
2.1, since now B ∈ εD1[[ε]] is a formal sum of bidifferential operators.
Analogously, the gauge group is given exactly by formal differential op-
erators and the action on the star product is the one given in (3), since
the adjoint action, due to the definition of the Gerstenhaber bracket, is
nothing but the composition of Di with Bj .

3.3 The first term: U1

In this last Section we will give an account for the structures we had to
introduce and for the two particular cases of DGLA we defined above.

As we already mentioned, our main goal is to prove the formality of
the DGLA D of multidifferential operators. This approach relies on the
existence of a previous result by Hochschild, Kostant and Rosenberg [28]
which, for any given smooth manifold M , establishes an isomorphism
between the cohomology of the algebra of multidifferential operators
and the algebra of multivector fields which, according to our previous
definition, coincides with its cohomology.

HKR: H(D̃) ∼−→Ṽ = H(Ṽ)

Actually the original result concerned smooth affine algebraic varieties,
but it can be extended to smooth manifolds, as it is shown for instance
in [34]. This isomorphism is induced by the natural map

U
(0)
1 : Ṽ −→ D̃

which extends the usual identification between vector fields and first
order differential operators, mapping a homogeneous element of the form
ξ0 ∧ · · · ∧ ξn to the multidifferential operator whose action on functions
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f0, . . . , fn is given by

1
(n + 1)!

∑
σ∈Sn+1

sgn(σ) ξσ(0)(f0) · · · ξσ(n )(fn),

where we made use of the above mentioned identification for each ξi;
the definition is extended to 0-th order vector fields as the identity map.
Unfortunately this map, which can be easily checked to be a chain map,
fails to preserve the Lie structure, as can be easily verified already at
order 2. Given two homogeneous bivector fields χ1 ∧ χ2 and ξ1 ∧ ξ2, we
can verify explicitly that in general

U
(0)
1 ([ χ1 ∧ χ2 , ξ1 ∧ ξ2 ]) 
=

[
U

(0)
1 (χ1 ∧ χ2) , U

(0)
1 (ξ1 ∧ ξ2)

]
.

Omitting the subscripts SN and G and the wedge products to ease the
notation, the l.h.s. applied to a triple of functions gives

U
(0)
1

(
[ χ1 , ξ1 ] χ2 ξ2 − [ χ1 , ξ2 ]χ2ξ1

− [ χ2 , ξ1 ]χ1ξ2 + [χ2 , ξ2 ]χ1ξ1

)
(f⊗g⊗h)

=
1
6

(
χ1ξ1f χ2g ξ2h− ξ1χ1f χ2g ξ2h− χ1ξ2f χ2g ξ1h

+ ξ2χ1f χ2g ξ1h +−χ2ξ1f χ1g ξ2h + ξ1χ2f χ1g ξ2h

+ χ2ξ2f χ1g ξ1h + ξ2χ2f χ1g ξ1h
)

+ perm.

while the r.h.s. is[
1
2

(χ1 · χ2 − χ2 · χ1) ,
1
2

(ξ1 · ξ2 − ξ2 · ξ1)
]
(f⊗g⊗h) =

=
1
4

(
χ1(ξ1f ξ2g)χ2h + · · ·

)
.

However the difference between the two terms is the image of a closed
term in the cohomology of D. We have therefore a way to control the
defect of this map in being a Lie algebra morphism and we can hope
to find a way to extend it somehow to a morphism whose first order
approximation is this isomorphism of complexes. This is exactly the role
played by the L∞-morphism U we will define in the next Sections: in
order to give a geometric interpretation of this approximation we will
look at the same problem from a dual perspective.
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Digression: what happens in the dual

The whole machinery of the Kontsevich’s construction can be better
understood by looking at the mathematical objects and structures we
previously introduced from a dual point of view.

Given a vector space V , polynomials on V can be naturally identified
with symmetric functions on the dual space V ∗ defining

f(v) :=
∑ 1

k!
fk(v · · · v) ∀v ∈ V

where the coefficients fk are elements of Sk(V ∗).
To extend this construction to the case when V is a graded vector

space we have to consider the exterior algebra instead. If we introduce
the completion Λ(V ∗) of this algebra1, we can define in a similar way a
function in a formal neighborhood of 0 to be given by the formal Taylor
expansion in the parameter ε

f(εv) :=
∑ εk

k!
fk(v · · · v) ∀v ∈ V.

Following this recipe, a vector field X on V can be identified with a
derivation on Λ(V ∗) and the Leibniz rule ensures that X is completely
determined by its restriction on V ∗. In an analogous way an algebra
homomorphism

φ : Λ(W ∗) → Λ(V ∗),

determines a map f = φ∗ : Λ(V ) → Λ(W ) whose components fk are

1 To be more precise, we should specify the topology w.r.t. which we define this

completion. This can be done in a natural way considering S(V ∗) (resp. Λ(V ∗))
as the injective limit of the Sk(V ∗) (resp. Λk(V ∗)) with the induced topology, as
in the case of formal power series.
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completely determined by their projection on W as the φk are deter-
mined by their restriction on W ∗.

In the following we will need the pointed version of these objects,
namely we will consider the pair (V, 0) as a pointed manifold and define
a (formal) pointed map to be an algebra homomorphism between the
reduced symmetric algebras (as introduced in 11)

φ : Λ(W ∗)>0 → Λ(V ∗)>0,

where the subscript “ > 0” indicates that we are considering the two
coalgebras as the (completion of the) quotients of T (W ∗) (resp. T (V ∗)).
Analogously, a pointed vector field X is a vector field which has zero as a
fixed point, i.e. such that

X(f)(0) = 0 ∀f

or equivalently such that (Xf)0 = 0 for every map f .
We will further call a pointed vector field cohomological — or Q-field

— iff it commutes with itself, i.e. iff X2 = 1
2 [X,X] = 0 and pointed

Q-manifold a (formal) pointed manifold together with a cohomological
vector field.

We turn now our attention to the non commutative case, taking a Lie
algebra g. The bracket [ , ] : Λ2g → g gives rise to a linear map

[ , ]∗ : g∗ → Λ2(g)
∗
.

We can extend it to whole exterior algebra to

δ : Λ•(g)∗ → Λ•+1(g)
∗

requiring that δ|g∗ ≡ [ , ]∗ and imposing the Leibniz rule to get a deriva-
tion.

The exterior algebra can now be interpreted as some odd analog of
a manifold, on which δ plays the role of a (pointed) vector field. Since
the Jacobi identity on [ , ] translates to the equation δ2 = 0, δ is a
cohomological pointed vector field.

If we now consider two Lie algebras g and h and endow their exte-
rior algebras with differentials δg and δh, a Lie algebra homomorphism
φ : g → h will correspond in this case to a chain map φ∗h∗ → g∗, since

φ
(
[ · , · ]

g

)
= [φ(·) , φ(·) ]

h
⇐⇒ δg ◦ φ∗ = φ∗ ◦ δh

This is the first glimpse of the correspondence between L∞-algebras
and pointed Q-manifolds: a Lie algebra is a particular case of DGLA,
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which in turn can be endowed with an L∞-structure; from this point of
view the map φ satisfies the same equation of the first component of an
L∞-morphism as given in (13) for n = 1.

To get the full picture, we have to extend the previous construction
to the case of a graded vector space Z which has odd and even parts.
Functions on such a space can be identified with elements in the tensor
product S(Z∗) := S(V ∗) ⊗ Λ(W ∗), where Z = V ⊕ ΠW is the natural
decomposition of the graded space in even and odd subspaces.2

The conditions for a vector field δ : S•(Z∗) → S•+1(Z∗) to be coho-
mological can now be expressed in terms of its coefficients

δk : Sk(Z∗) → Sk+1(Z∗)

expanding the equation δ2 = 0. This gives rise to an infinite family of
equations: 

δ0 δ0 = 0

δ1 δ0 + δ0 δ1 = 0

δ2 δ0 + δ1δ1 + δ0δ2 = 0

· · ·

If we now define the dual coefficients mk := (δk|Z∗)∗ and introduce
the natural pairing 〈 , 〉 : Z∗⊗Z → C, we can express the same condition
in terms of the maps

mk : Sk+1(Z) → Z,

paying attention to the signs we have to introduce for δ to be a (graded)
derivation.

The first equation ( m0 m0 = 0 ) tells us that m0 is a differential on
Z and defines therefore a cohomology Hm0(Z).

For k = 1, with an obvious notation, we get

〈 δ1 δ0 f , xy 〉 = 〈 δ0 f , m1(xy) 〉 = 〈 f , m0(m1(xy)) 〉

and

〈 δ0 δ1 f , xy 〉 = 〈 δ1 f , m0(x) y 〉+ (−)|x| 〈 δ1 f , x m0(y) 〉 =

= 〈 f , m1(m0(x) y) 〉+ (−)|x| 〈 f , m1(xm0(y)) 〉 ,

2 In the following we will denote by ΠW the (odd) space defined by a parity
reversal on the vector space W , which can be also written as W [1], using the
notation introduced in Section 3.1.
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i.e. m0 is a derivation w.r.t. the multiplication defined by m1.
If we now write Z as g[1] and identify the symmetric and exterior

algebras with the décalage isomorphism Sn(g[1]) ∼−→Λn(V [n]), m1 can
be interpreted as a bilinear skew-symmetric operator on g.

The next equation, which involves m1 composed with itself, tells us
exactly that this operator is indeed a Lie bracket for which the Jacobi
identity is satisfied up to terms containing m0, i.e. — since m0 is a
differential — up to homotopy.

Putting the equations together, this gives rise to a strong homotopy
Lie algebra structure on g, thus establishing a one-to-one correspondence
between pointed Q-manifolds and SHLA’s, which in turn are equivalent
to L∞-algebras, as we already observed in Section 3.1.

Finally, to complete this equivalence and to express the formality con-
dition (13) more explicitly, we spell out the equations for the coefficients
of a Q-map, i.e. a (formal) pointed map between two Q-manifolds Z and
Z̃ which commutes with the Q-fields; namely:

φ : S
(
Z̃∗

>0

)
−→ S(Z∗

>0)

s. t.
φ ◦ δ̃ = δ ◦ φ.

(23)

As for the case of the vector field δ, we consider only the restriction
of this map to the original space Z̃ and define the coefficients of the dual
map as

Uk :=
(
φk|Z̃∗

)∗ : Sk(Z) → Z̃.

With the same notation as above, we can express the condition (23)
on the dual coefficients with the help of the natural pairing. The first
equation reads: 〈

φ δ̃ f , x
〉

= 〈 δ φ f , x 〉
⇓〈

δ̃0 f , U1(x)
〉

= 〈φ f , m0(x) 〉
⇓

〈 f , m̃0(U1(x)) 〉 = 〈 f , U1(m0(x)) 〉 .

As we could have guessed from the discussion in Section 3.1, the first
coefficient U1 is a chain map w.r.t. the differential defined by the first
coefficient of the Q-structures.

[U1] : Hm0(Z) → Hm̃0(Z̃).
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An analogous computation gives the equation for the next coefficient:

m̃1(U1(x)U1(y)) + m̃1(U2(x y))

= U2(m0(x) y) + (−)|x|U2(xm0(y)) + U1(m1(x y)),

which shows that U1 preserves the Lie structure induced by m1 and m̃1

up to terms containing m0 and m̃0, i.e. up to homotopy.
This is exactly what we were looking for: as the map U

(0)
1 defined

in Section 3.3 is a chain map which fails to be a DGLA morphism, a
Q-map U (or equivalently an L∞-morphism) induces a map U1 which
shares the same property.

We restrict thus our attention to DGLA’s, considering now a pair
of pointed Q-manifolds Z and Z̃ such that mk = m̃k = 0 for k > 1.
Equivalently, we consider two L∞-algebras as in Example 3.8, whose
coderivation have only two non-vanishing components.

A straightforward computation which follows the same steps as above
for k = 1, 2, leads in this case to the following condition on the n-th
coefficient of U :

m̃0 (Un(x1 · · ·xn)) +
1
2

∑
I�J ={1, . . .n}

I ,J �=∅

εx(I, J) m̃1

(
U|I|(xI) · U|J|(xJ)

)

=
n∑

k=1

εk
xUn (m0(xk) · x1 · · · x̂k · · ·xn)

+
1
2

∑
k 	=l

εkl
x Un−1 (m1(xk · xl) · x1 · · · x̂k · · · x̂l · · ·xn) (24)

To avoid a cumbersome expression involving lots of signs, we in-
troduced a shorthand notation εx(I, J) for the Koszul sign associ-
ated to the (|I|, |J |)-shuffle permutation associated to the partition
I � J = {1, . . . , n}3 and εk

x (resp. εkl
x ) for the particular case I = {k}

(resp. I = {k, l}); we further simplified the expression adopting the mul-
tiindex notation xI :=

∏
i∈I xi.

3 Whenever a vector space V is endowed with a graded commutative product, the
Koszul sign ε(σ) of a permutation σ is the sign defined by

x1 · · ·xn = ε(σ) xσ(1) · · ·xσ(n ) xi ∈ V.

An (l, n − l)-shuffle permutation is a permutation σ of (1, . . . , n) such that
σ(1) < · · · < σ(l) and σ(l + 1) < · · ·σ(n). The shuffle permutation associated to a
partition I1 � · · · � Ik = {1, . . . , n} is the permutation that takes first all the
elements indexed by the subset I1 in the given order, then those indexed by I2
and so on.
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This expression will be specialized in next Section to the case of the
L∞-morphism introduced by Kontsevich to give a formula for the star
product on Rd: we will choose as Z the DGLA V of multivector fields and
as Z̃ the DGLA V of multidifferential operators and derive the equation
that the coefficients Un must satisfy to determine the required formality
map.

As a concluding act of this digression, we will establish once and for all
the relation between the formality of D and the solution of the problem
of classifying all possible star products on Rd.

As we already worked out in Section 3.1, the associativity of the
star product as well as the Jacobi identity for a bivector field are en-
coded in the Maurer–Cartan equations 22 resp. 17. In order to translate
these equations in the language of pointed Q-manifolds, we have first
to introduce the generalized Maurer–Cartan equation on an (formal)
L∞-algebra (g[[ε]], Q):

Q(exp ε x) = 0 x ∈ g1[[ε]],

where the exponential function exp maps an element of degree 1 to a
formal power series in εg[[ε]].

From a dual point of view, this amounts to the request that x is a
fixed point of the cohomological vector field δ, i.e. that for every f in
S(g∗[[ε]][1])

δ f(ε x) = 0.

Since (δf)k = δk−1f , expanding the previous equation in a formal
Taylor series and using the pairing as above to get 〈 δk−1f , x · · ·x 〉 =
〈 f , mk−1(x · · ·x) 〉, the generalized Maurer–Cartan equation can be
written in the form

∞∑
k=1

εk

k!
mk−1(x · · ·x) = ε m0(x) +

ε2

2
m1(xx) + o(ε3) = 0. (25)

It is evident that (the formal counterpart of) equation 15 is recovered
as a particular case when mk = 0 for k > 1.

Finally, as a morphism of DGLA’s preserves the solutions of the
Maurer–Cartan equation, since it commutes both with the differen-
tial and with the Lie bracket, an L∞-morphism φ : S((h∗[[ε]][1])) →
S((g∗[[ε]][1])), according to (23), preserves the solutions of the above
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generalization; with the usual notation, if x is a solution to (25) on g[[ε]],

U(ε x) =
∑
k=1

εk

k!
Uk(x · · ·x)

is a solution of the same equation on h.
The action of the gauge group on the set MC(g) can analogously be

generalized to the case of L∞-algebras and a similar computation shows
that, if x and x′ are equivalent modulo this generalized action, their
images under U are still equivalent solutions.

In conclusion, reducing the previous discussion to the specific case we
are interested in, namely when g = V and h = D, given an L∞-morphism
U we have a formula to construct out of any (formal) Poisson bivector
field π an associative star product given by

U(π) =
∑
k=0

εk

k!
Uk(π · · ·π) (26)

where we reinserted the coefficient of order 0 corresponding to the orig-
inal non deformed product. If moreover U is a quasi-isomorphism, the
correspondence between (formal) Poisson structures on M and formal
deformations of the pointwise product on C∞(M) is one-to-one: in other
terms once we give a formality map, we have solved the problem of
existence and classification of star products on M .

This is exactly the procedure followed by Kontsevich to give his for-
mula for the star product on Rd.
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The Kontsevich formula

In this Section we will finally give an explicit expression of Kontsevich’s
formality map from V to D which induces the one-to-one map from
(formal) Poisson structures on Rd to star products on C∞(Rd

)
.

The main idea is to introduce a pictorial way to describe how a mul-
tivector field can be interpreted as a multidifferential operator and to
rewrite the equations introduced in (23) in terms of graphs.

As a toy model we can consider the Moyal star product introduced
in Section 2 and give a pictorial version of formula (1) as follows:

...

f g f f fg g g

f * g := + + + +

Figure 5.1 A pictorial representation of the first terms of the Moyal star

product.

To the n-th term of the series we associate a graph with n “unfilled”
vertices – which represent the n copies of the Poisson tensor π – and
two “filled” vertices – which stand for the two functions that are to
be differentiated; the left (resp. right) arrow emerging from the vertex
corresponding to πij represent ∂i (resp. ∂j) acting on f (resp. g) and
the sum over all indices involved is understood.

This setting can be generalized introducing vertices of higher order,
i.e. with more outgoing arrows, to represent multivector fields and letting
arrows point also to “unfilled” vertices, to represent the composition
of differential operators: in the Moyal case, since the Poisson tensor is
constant such graphs do not appear.

The main intuition behind the Kontsevich formula for the star prod-
uct is that one can introduce an appropriate set of graphs and assign

120
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to each graph Γ a multidifferential operator BΓ and a weight wΓ in
such a way that the map that sends an n-tuple of multivector fields to
the corresponding weighted sum over all possible graphs in this set of
multidifferential operators is an L∞-morphism.

This procedure will become more explicit in the next Section, where
we will go into the details of Kontsevich’s construction.

5.1 Admissible graphs, weights and BΓ’s

First of all, we have to introduce the above mentioned set of graphs we
will deal with in the following.

Definition 5.1 The set Gn,n̄ of admissible graphs consists of all con-
nected graphs Γ which satisfy the following properties:

- the set of vertices V (Γ) is decomposed in two ordered subsets V1(Γ)
and V2(Γ) isomorphic to {1, . . . , n} resp. {1̄, . . . , n̄} whose elements
are called vertices of the first resp. second type;

- the following inequalities involving the number of vertices of the
two types are fulfilled: n ≥ 0, n̄ ≥ 0 and 2n + n̄− 2 ≥ 0;

- the set of edges E(Γ) is finite and does not contain small loops, i.e.
edges starting and ending at the same vertex;

- all edges in E(Γ) are oriented and start from a vertex of the first
type;

- the set of edges starting at a given vertex v ∈ V1(Γ), which will be
denoted in the following by Star(v), is ordered.

Example 5.2 Admissible graphs
Graphs i) and ii) in Fig. 5.2 are admissible, while graphs iii) and iv)

are not.

21

2

1

21

21 21212 31

3

2

1

i) ii) iii) iv)

Figure 5.2 Some examples of admissible and non-admissible graphs.

We now introduce the procedure to associate to each pair (Γ, ξ1 ⊗
· · · ⊗ ξn) consisting of a graph Γ ∈ Gn,n̄ with 2n + m− 2 edges and of a
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tensor product of n multivector fields on Rd a multidifferential operator
BΓ ∈ Dn̄−1.

� We associate to each vertex v of the first type with k outgoing arrows
the skew-symmetric tensor ξj1,...,jk

i corresponding to a given ξi via the
natural identification.

� We place a function at each vertex of the second type.
� We associate to the l-th arrow in Star(v) a partial derivative w.r.t.

the coordinate labeled by the l-th index of ξi acting on the function
or the tensor appearing at its endpoint.

� We multiply such elements in the order prescribed by the labeling of
the graph.

As an example, the multidifferential operator corresponding to the
first graph in Fig.5.2 and to the triple (α, β, γ) of bivector fields is given
by

UΓ1(α, β, γ)(f, g) := βb1b2 ∂b1α
a1a2 ∂b2γ

c1c2 ∂a1∂c1f ∂a2∂c2g,

while the operator corresponding to the second graph and the pair
(π, ρ)is

UΓ1(π, ρ)(f, g, h) := πp1p2∂p1ρ
r1r2r3∂r1f∂r2g∂r3∂p2h

This construction gives rise for each Γ to a linear map UΓ : Tn(V) →
D which is equivariant w.r.t. the action of the symmetric group, i.e.
permuting the order in which we choose the edges we get a sign equal
to the signature of the permutation. The main point in Kontsevich’s
formality theorem was to show that there exist a choice of weights wΓ

such that the linear combination

U :=
∑
Γ

wΓBΓ

defines an L∞-morphism, where the sum runs over all admissible graphs.
These weights are given by the product of a combinatorial coefficient

times the integral of a differential form ωΓ over the configuration space
Cn,n̄ defined in the following. The expression of the weight wΓ associated
to Γ ∈ Gn,n̄ is then:

wΓ :=
n∏

k=1

1
(# Star(k))!

1
(2π)2n+n̄−2

∫
C̄+

n ,n̄

ωΓ (27)

if Γ has exactly 2n + n̄ − 2 edges, while the weight is set to vanish
otherwise. The definition of ωΓ and of the configuration space can be
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better understood if we imagine embedding the graph Γ in the upper
half plane H := {z ∈ C| �(z) ≥ 0} binding the vertices of the second
type to the real line.

We can now introduce the open configuration space of the n + n̄

distinct vertices of Γ as the smooth manifold:

Confn,n̄ :=
{

(z1, . . . , zn, z1̄, . . . , zn̄) ∈ Cn+n̄
∣∣∣ zi ∈ H+, zī ∈ R,

zi 
= zj for i 
= j, zī 
= zj̄ for ī 
= j̄
}

.

In order to get the right configuration space we have to quotient Confn,n̄

by the action of the 2-dimensional Lie group G consisting of translations
in the horizontal direction and rescaling, whose action on a given point
z ∈ H is given by:

z �→ az + b a ∈ R+, b ∈ R.

In virtue of the condition imposed on the number of vertices in (5.1), the
action of G is free; therefore the quotient space, which will be denoted
by Cn,n̄, is again a smooth manifold, of (real) dimension 2n + n̄− 2.

Particular care has to be devoted to the case when the graph has
no vertices of the second type. In this situation, having no points on
the real line, the open configuration space can be defined as a subset of
Cn instead of Hn and we can introduce a more general Lie group G′,
acting by rescaling and translation in any direction; the quotient space
Cn := Confn,0 /G′ for n ≥ 2 is again a smooth manifold, of dimension
2n− 3.

In order to get a connected manifold, we restrict further our attention
to the component C+

n,n̄ in which the vertices of the second type are
ordered along the real line in ascending order, namely:

C+
n,n̄ :=

{
(z1, . . . , zn, z1̄, . . . , zn̄) ∈ Cn,n̄

∣∣∣ zī < zj̄ for ī < j̄
}

.

On these spaces we can finally introduce the differential form ωΓ. We
first define an angle map

φ : C2,0 −→ S1

which associates to each pair of distinct points z1, z2 in the upper half
plane the angle between the geodesics w.r.t. the Poincaré metric connect-
ing z1 to + i∞ and to z2, measured in the counterclockwise direction
(cfr. Fig. 5.3).

The differential of this function is now a well-defined 1-form on C2,0

which we can pull-back to the configuration space corresponding to the
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H

φ
2z

1z

Figure 5.3 The angle map φ

whole graph with the help of the natural projection πe associated to
each edge e = (zi, zj) of Γ

πe : Cn,n̄ −→ C2,0

(z1, . . . , zn̄) �→ (zi, zj)

to obtain dφe := π∗
e dφ ∈ Ω1(Cn,n̄). The form that appears in the defi-

nition of the weight wΓ can now be defined as

ωΓ :=
∧
e∈Γ

dφe

where the ordering of the 1-forms in the product is the one induced on the
set of all edges by the ordering on the (first) vertices and the ordering
on the set Star(v) of edges emerging from the vertex v. We want to
remark hereby that, as long as we consider graphs with 2n+ n̄−2 edges,
the degree of the form matches exactly the dimension of the space over
which it has to be integrated, which gives us a real valued weight.

This geometric construction has a more natural interpretation if one
derives the Kontsevich formula for the star product from a path integral
approach, as it was done for the first time in [11].

For the weights to be well-defined, we also have to require that the
integrals involved converge. However, as the geometric construction of φ

suggests, as soon as two points approach each other, the differential form
dφ is not defined. The solution to this problem has already been given
implicitly in (27): the differential form is not integrated over the open
configuration space, but on a suitable compact space whose definition
and properties are contained in the following

Lemma 5.3 For any configuration space Cn,n̄ (resp. Cn) there exists a
compact space C̄n,n̄ (resp. C̄n) whose interior is the open configuration
space and such that the projections πe, the angle map φ and thus the
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differential form ωΓ extend smoothly to the corresponding compactifica-
tions.

The compactified configuration spaces are (compact) smooth manifolds
with corners. We recall that a smooth manifold with corner of dimension
m is a topological Hausdorff space M which is locally homeomorphic to
Rm−n×Rn

+ with n = 0, . . . , m. The points x ∈ M whose local expression
in some (and thus any) chart has the form x1, . . . , xm−n, 0, . . . , 0) are said
to be of type n and form submanifolds of M called strata of codimension
n.

The general idea behind such a compactification is that the naive
approach of considering the closure of the open space in the cartesian
product would not take into account the different speeds with which two
or more points “collapse” together on the boundary of the configuration
space.

For a more detailed description of the compactification we refer the
reader to [22] for an algebraic approach and to [4] and [8] for an explicit
description in local coordinates. More recently Sinha [42] gave a simpli-
fied construction in the spirit of Kontsevich’s original ideas. In [3] the
orientation of such spaces and of their codimension one strata – whose
relevance will be clarified in the following – is discussed.

Finally, the integral in (27) is well-defined and yields a weight wΓ ∈ R
for any admissible graph Γ, since we defined wΓ to be non zero only when
Γ has exactly 2n + m− 2 edges, i.e. when the degree of ωΓ matches the
dimension of the corresponding configuration space.

5.2 The proof: Lemmas, Stokes’ theorem,
Vanishing theorems

Having defined all the tools we will need, we can now give a sketch of
the proof.

In order to verify that U defines the required L∞-morphism we have
to check that the following conditions hold:

I The first component of the restriction of U to V is – up to a shift
in the degrees of the two DGLAs – the natural map introduced in
Section (3.3).

II U is a graded linear map of degree 0.
III U satisfies the equations for an L∞-morphism defined in Section
(4).
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Lemma 5.4 I The map

U1 : V −→ D

is the natural map that identifies each multivector field with the corre-
sponding multiderivation.

Proof The set G1,n̄ consist of only one element, namely the graph Γn̄

with one vertex of the first type with 2 · 1 + n̄ − 2 = n̄ arrows with an
equal number of vertices of the second type as endpoints.

1

n1 32

Figure 5.4 The admissible graph Γn̄

To each k-vector field ξ we associate thus the multidifferential oper-
ator given by

UΓn̄
(ξ)(f1̄, . . . , fn̄) := wΓn̄

ξi1̄,...,in̄ ∂i1̄f1̄ · · · ∂in̄
fn̄.

An easy computation shows that the integral of ωΓn̄ over C̄1,n̄ cancels
the power of 1

2π and leaves us with the right weight

wΓn̄ =
1
n̄!

we expect for U1 to be the natural map that induces the HKR isomor-
phism.

Lemma 5.5 II The n-th component

Un :=
∞∑

n̄=1

∑
Γ∈Gn ,n̄

wΓBΓ

has the right degree for U to be an L∞-morphism.

Proof To each vertex vi with #Star(vi) outgoing arrows corresponds an
element of Vri = Ṽri +1 where ri = #Star(vi). On the other side, each
graph with n̄ vertices of the second type together with an n-tuple of
multivector fields gives rise to a differential operator of degree s = n̄−1.
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Since we consider only graphs with 2n + n̄ − 2 edges and this is equal
by construction to

n∑
i=1

#Star(vi),

the degree of Un(ξ1, . . . , ξn) can be written as

s = (2n + n̄− 2) + 1− n =
n∑

i=1

ri + 1− n

which is exactly the prescribed degree for the n-th component of an
L∞-morphism.

Although the construction we gave in the previous section involves
a tensor product of multivector fields, the signs and weights in Un are
chosen in such a way that, upon symmetrization, it descends to the
symmetric algebra.

We come now to the main part of Kontsevich’s construction: the
geometric proof of the formality.

First of all we have to extend our morphism U to include also a 0-th
component which represents the usual multiplication between smooth
functions — the associative product we want to deform via the higher
order corrections. We can now specialize the L∞ condition (24) to the
case at hand, where m0 m̃0 can be expressed in terms of of the Taylor
coefficients Un as:

n∑
l=0

m∑
k=−1

m−k∑
i=0

εkim

∑
σ∈Sl,n−l

εξ(σ) Ul

(
ξσ(1), . . . , ξσ(l)

)
(
f0⊗ · · · ⊗fi−1⊗Un−l(ξσ(l + 1), . . . , ξσ(n ))(fi⊗ · · · ⊗fi+k)⊗fi+k+1⊗ · · · ⊗fm

)
=

n∑
i	=j=1

εij
ξ Un−1(ξi ◦ ξj , ξ1, . . . , ξ̂i, . . . , ξ̂j , . . . , ξn)(f0⊗ · · · ⊗fn), (28)

where

- {ξj}j=1,...,n are multivector fields;
- f0, . . . , fm are the smooth functions on which the multidifferential
operator is acting;

- Sl,n−l is the subset of Sn consisting of (l, n− l)-shuffles
- the product ξi ◦ ξj is defined in such a way that the Schouten–
Nijenhuis bracket can be expressed in terms of this composition by
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a formula similar to the one relating the Gerstenhaber bracket to
the analogous composition ◦ on D given in 3.2.2;

- the signs involved are defined as follows: εkim := (−1)k(m+i), εξ(σ)
is the Koszul sign associated to the permutation σ and εij

ξ is defined
as in (24).

This equation encodes the formality condition since the l.h.s. corre-
sponds to the Gerstenhaber bracket between multidifferential operators
while the r.h.s. contains “one half” of the Schouten–Nijenhuis bracket;
the differentials do not appear explicitly since on V we defined d to be
identically zero, while on D it is expressed in terms of the bracket with
the multiplication m, which we included in the equation as U0.

For a detailed explanation of the signs involved we refer again to [3].
We can now rewrite equation (28) in a form that involves again ad-

missible graphs and weights to show that it actually holds. It should be
clear from the previous construction of the coefficients Uk that the dif-
ference between the l.h.s. and the r.h.s. of equation (28) can be written
as a linear combination of the form∑

Γ∈Gn ,n̄

cΓUΓ(ξ1, . . . , ξn)(f0⊗ · · · ⊗fn) (29)

where the the sum runs in this case over the set of admissible graphs
with 2n + n̄− 3 edges. Equation (28) is thus fulfilled for every n if these
coefficients cΓ vanish for every such graph.

The main tool to prove the vanishing of these coefficients is the Stokes
Theorem for manifolds with corners, which ensures that also in this case
the integral of an exact form dΩ on a manifold M can be expressed
as the integral of Ω on the boundary ∂M . In the case at hand, this
implies that if we choose as Ω the differential form ωγ corresponding to
an admissible graph, since each dφe is obviously closed and the manifolds
C̄+

n,n̄ are compact by construction, the following holds:∫
∂C̄+

n ,n̄

ωΓ =
∫

C̄+
n ,n̄

dωΓ = 0. (30)

We will now expand the l.h.s. of (30) to show that it gives exactly the
coefficient cΓ occurring in (29) for the corresponding admissible graph.

First of all, we want to give an explicit description of the manifold
∂C̄+

n,n̄ on which the integration is performed. Since the weights wΓ in-
volved in (28) are set to vanish identically if the degree of the differential
form does not match the dimension of the space on which we integrate,
we can restrict our attention to codimension 1 strata of ∂C̄+

n,n̄, which
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have the required dimension 2n + n̄ − 3 equal to the number of edges
and thus of the 1-forms dφe.

In an intuitive description of the configuration space C̄n,n̄, the bound-
ary represents the degenerate configurations in which some of the n + n̄

points “collapse together”. The codimension 1 strata of the boundary
can thus be classified as follows:

� strata of type S1, in which i ≥ 2 points in the upper half plane H+

collapse together to a point still lying above the real line. Points in
such a stratum can be locally described by the product

Ci × Cn−i+1,n̄. (31)

where the first term stand for the relative position of the collapsing
points as viewed “through a magnifying glass” and the second is the
space of the remaining points plus a single point toward which the
first i collapse.

� strata of type S2, in which i > 0 points in H+ and j > 0 points in R
with 2i + j ≥ 2 collapse to a single point on the real line. The limit
configuration is given in this case by

Ci,j × Cn−i,n̄−j+1. (32)

These strata have a pictorial representation in Figure 5.5. In both
cases the integral of ωΓ over the stratum can be split into a product of
two integrals of the form (27): the product of those dφe for which the edge
e connects two collapsing points is integrated over the first component
in the decomposition of the stratum given by (31) resp. (32), while the
remaining 1-forms are integrated over the second.

n21 .   .   .   .   . i .   .   .   .   ..   .   .   .   .

i

1 2

n

21

n HH

n1

Figure 5.5 Looking at codimension 1 strata “through a magnifying glass”.

According to this description, we can split the integral in the l.h.s.
of (30) into a sum over different terms coming from strata of type S1
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and S2. Now we are going to list all the possible configurations leading
to such strata to show that most of these terms vanish and that the
only remaining terms are exactly those required to give rise to (28). We
will not check directly that the signs we get by the integration match
with those in (28), since we did not give explicitly the orientation of the
configuration spaces and of their boundaries, but we refer once again the
reader to the only paper completely devoted to the careful computation
of all signs involved in Kontsevich’s construction [3].

Among the strata of type S1, we distinguish two subcases, accord-
ing to the number i of vertices collapsing. Since the integrals are set to
vanish if the degree of the form does not match the dimension of the do-
main, a simple dimensional argument shows that the only contributions
come from those graphs Γ whose subgraph Γ1 spanned by the collapsing
vertices contains exactly 2i− 3 edges.

If i = 2 there is only an edge e involved and in the first integral
coming from the decomposition (31) the differential of the angle function
is integrated over C2

∼= S1 and we get (up to a sign) a factor 2π which
cancels the coefficient in (27). The remaining integral represents the
weight of the corresponding quotient graph Γ2 obtained from the original
graph after the contraction of e: to the vertex j of type I resulting
from this contraction is now associated the j-composition of the two
multivector fields that were associated to the endpoints of e. Therefore,
summing over all graphs and all strata of this subtype we get the r.h.s.
of the desired equation (28).

If i ≥ 3, the integral corresponding to this stratum involves the prod-
uct of 2i−3 angle forms over Ci and vanishes according to the following
Lemma, which contains the most technical result among Kontsevich’s
“vanishing theorems”.

The two possible situations are exemplified in Figure 5.6.

H H

1 n.   .   .   .   .1 n.   .   .   .   .

Figure 5.6 Example of a non vanishing and of a vanishing term.
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Lemma 5.6 The integral over the configuration space Cn of n ≥ 3
points in the upper half plane of any 2n − 3 (= dimCn) angle forms
dφei with i = 1, . . . n vanishes for n ≥ 3

Proof The first step consists in restricting the integration to an even
number of angle forms. This is achieved by identifying the configuration
space Cn with the subset of Hn where one of the endpoints of e1 is
set to be the origin and the second is forced to lie on the unit circle
(this particular configuration can always be achieved with the help of
the action of the Lie group G′). The integral decomposes then into a
product of dφe1 integrated over S1 and the remaining 2n − 4 =: 2N

forms integrated over the resulting complex manifold U given by the
isomorphism Cn

∼= S1 × U . The claim is then a consequence of the
following chain of equalities:∫

U

2N∧
j=1

d arg(fj) =
∫

U

2N∧
j=1

d log |fj | =
∫

U

I
(
d
(
log |f1|

2N∧
j=2

d log |zj |
))

=

=
∫

U

dI
((

log |f1|
2N∧
j=2

d log |zj |
))

= 0

(33)
where we gave an expression for the angle function φej

in terms of the
argument of the (holomorphic) function fj (which is nothing but the
difference of the coordinates of the endpoints of ej).

The first equality is what Kontsevich calls a “trick using logarithms”
and follows from the decompositions

d arg(fj) =
1
2i

(
d log(fj)− d log(f j)

)
and

d log |fj | =
1
2
(
d log(fj) + d log(f j)

)
.

The product of 2N such expressions is thus a linear combination of
products of k holomorphic and 2N − k anti-holomorphic forms. A ba-
sic result in complex analysis ensures that, upon integration over the
complex manifold U , the only terms that do not vanish are those with
k = N . It is a straightforward computation to check that the non vanish-
ing terms coming from the first decomposition match with those coming
from the second.

In the second equality the integral of the differential form is replaced
by the integration of a suitable 1-form with values in the space of distri-
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butions over the compactification U of U . A final Lemma in [34] shows
that this map I from standard to distributional 1-forms commutes with
the differential, thus proving the last step in (33). In [30], Khovanskii
gave a more elegant proof of this result in the category of complete com-
plex algebraic varieties, deriving the first equality rigorously on the set
of non singular points of X and resolving the singularities with the help
of a local representation in polar coordinates.

Finally, turning our attention to the strata of type S2, the same di-
mensional argument introduced for the previous case restricts the possi-
ble non vanishing terms to the condition that the subgraph Γ1 spanned
by the i+ j collapsing vertices (resp. of the first and of the second type)
contains exactly 2i + j − 2 edges.

With the same definition as before for the quotient graph Γ2 obtained
by contracting Γ1, we claim that the only non vanishing contributions
come from those graphs for which both graphs obtained from a given
Γ are admissible. In this case the weight wΓ will decompose into the
product wΓ1 ·wΓ2 which in general, by the conditions on the number of
edges of Γ and Γ1, does not vanish.

Since all other properties required by Definition 5.1 are inherited from
Γ, we have only to check that we do not get “bad edges” by contraction.
The only such possibility is depicted in the graph on the right in Figure
5.7 and occurs when Γ2 contains an edge which starts from a vertex of
the second type: in this case the corresponding integral vanishes because
it contains the differential of an angle function evaluated on the pair
(z1, z2), where the first point is constrained to lie on the real line and
such a function vanishes for every z2 because the angle is measured w.r.t.
the Poincaré metric (as it can be inferred intuitively from Figure 5.3).

H

i .   .   .   .   .

H

.   .   .   .   . i .   .   .   .   ..   .   .   .   .

bad edge

+i 1 i+1

Figure 5.7 Example of a collapse leading to an admissible quotient graph

and of a collapse corresponding to a vanishing term because of a bad edge.

The only non vanishing terms thus correspond to the case when we
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plug the differential operator corresponding to the subgraph Γ1 as k-th
argument of the one corresponding to Γ2, where k is the vertex of the
second type emerging from the collapse. Summing over all such possi-
bilities and having checked (up to a sign as usual) that we get the right
weights, it should be clear that the contribution due to the strata of type
S2 accounts for the l.h.s. of (28).

In conclusion, we have proved that the morphism U is an L∞-mor-
phism and since its first coefficient U1 coincides with the map U

(0)
1

given in Section 3.3 it is also a quasi-isomorphism and thus determines
uniquely a star product given by (26) for any given bivector field π on
Rd.



6

From local to global deformation
quantization

The content of this last section is based mainly on the work of Cattaneo,
Felder and Tomassini [13] (see also [14] and [12]), who gave a direct
construction of the quantization of a general Poisson manifold.

The Kontsevich formula, in fact, gives a quantization only for the case
M = Rd for any Poisson bivector field π and can thus be adopted in the
general case to give only a local expression of the star product.

The globalization Kontsevich sketched in [34] was carried through
in [35] by abstract arguments, extending the formality theorem to the
general case.

The works of Cattaneo, Felder and Tomassini instead give an explicit
recipe to define the star product globally, in a similar way to what Fe-
dosov has done in the symplectic category [19]. Also in their approach,
the main tool is a flat connection D on a vector bundle over M such
that the algebra of the horizontal sections w.r.t. to D is a quantization
of the Poisson algebra of the manifold.

We give now an outline of the construction, addressing the reader to
[13] for details and proofs.

In the first step, we introduce the vector bundle E0 → M of infinite
jets of functions together with the canonical flat connection D0. The
fiber Ex

0 over x ∈ M is naturally a commutative algebra and inherits the
Poisson structure induced fiberwise by the Poisson structure on C∞(M).
The canonical map which associates to any globally defined function its
infinite jet at each point x is a Poisson isomorphism onto the Poisson
algebra of horizontal sections of E0 w.r.t. D0.

As the star product yields a deformation of the pointwise product
on C∞(M), we need also a “quantum version” of the vector bundle and
of the flat connection in order to find an analogous isomorphism. The
vector bundle E → M is defined in terms of a section φaff of the fiber

134
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bundle Maff → M , where Maff is the quotient of the manifold Mcoor

of jets of coordinates systems on M by the action of the group GL(d, R)
of linear diffeomorphisms, namely E := (φaff )∗Ẽ where Ẽ is the bundle
of R[[ε]]-modules

Mcoor ×GL(d,R) R[[y1, . . . , yd]][[ε]] → Maff .

Since the section φaff can be realized explicitly by a collection of infinite
jets at 0 of maps φx : Rd → M such that φx(0) = x for every x ∈ M

(defined modulo the action of GL(d, R)), we can suppose for simplicity
that we have fixed a representative φx of the equivalence class for each
open set of a given covering, thus realizing a trivialization of the bundle
E. Therefore, from now on we will identify E with the trivial bundle with
fiber R[[y1, . . . , Y d]][[ε]]; in this way E realizes the desired quantization,
since it is isomorphic (as a bundle of R[[ε]]-modules) to the bundle E0[[ε]]

whose elements are formal power series with infinite jets of functions as
coefficients.

In order to define the star product and the connection on E, we have
first to introduce some new objects whose existence and properties are
byproducts of the formality theorem. Given a Poisson bivector field π

and two vector fields ξ and η on Rd, we define:

P (π) :=
∞∑

k=0

εk

k!
Uk(π, . . . , π),

A(ξ, π) :=
∞∑

k=0

εk

k!
Uk+1(ξ, π, . . . , π),

F (ξ, η, π) :=
∞∑

k=0

εk

k!
Uk+2(ξ, η, π, . . . , π).

(34)

A straightforward computation of the degree of the multidifferential
operators on the r.h.s. of (34) shows that P (π) is a (formal) bidifferential
operator, A(ξ, π) a differential operator and F (ξ, η, π) a function. Indeed
P (π) is nothing but the star product associated to π as introduced at
the end of Section 4.

More precisely, P , A and F are elements of degree resp. 0, 1 and 2 of
the Lie algebra cohomology complex of (formal) vector fields with values
in the space of local polynomial maps, i.e. multidifferential operators
depending polynomially on π: an element of degree k of this complex is a
map that sends ξ1∧· · ·∧ξk to a multidifferential operator S(ξ1, . . . , ξk, π)
(we refer the reader to [13] for details). The differential δ on this complex
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is then defined by

δ S(ξ1, . . . , ξk+1, π) :=
k+1∑
i=1

(−)i ∂

∂t

∣∣∣
t=0

S(ξ1, . . . , ξ̂i, . . . , ξk+1, (Φt
ξ)∗ π)

+
∑
i<j

(−)i+j S([ ξi , ξj ], ξ1, . . . , ξ̂i, . . . , ξ̂j , . . . , ξk+1, π)

where a caret denotes as usual the omission of the corresponding argu-
ment and Φt

ξ is the flow of the vector field xi.
As the associativity condition on the star product, which can now be

written in the form P ◦ (P ⊗ id− id⊗P ) = 0, follows from the formality
theorem, the following equations are a corollary of the same result and
can be proved with analogous computations:

P (π) ◦ (A(ξ, π)⊗ id + id⊗A(ξ, π)) = A(ξ, π) ◦ P (π) + δP (ξ, π)

P (π) ◦ (F (ξ, η, π)⊗ id− id⊗F (ξ, η, π))

= −A(ξ, π) ◦A(η, π) + A(η, π) ◦A(ξ, π) (35)

+ δA(ξ, η, π)

−A(ξ, π) ◦ F (η, ζ, π)−A(η, π) ◦ F (ζ, ξ, π)−A(ζ, π) ◦ F (ξ, η, π)

= δF (ξ, η, ζ, π)

The first of these equations describes the fact that under the coordi-
nate transformation induced by ξ the star product P (π) is changed to an
equivalent one up to higher order terms. The last two equations will be
used in the construction of the connection and its curvature, since they
represent an analogous of the defining relations between a connection
1-form A and its curvature FA.

Upon explicit computation of the configuration space integrals in-
volved in the definition of the Taylor coefficients Uk, we can also give
the lowest order terms in the expansion of P , A and F and their action
on functions:

(i) P (π)(f ⊗ g) = f g + ε π(df, dg) + O(ε2);
(ii) A(ξ, π) = ξ + O(ε), where we identify ξ with a first order differ-
ential operator on the r.h.s.;

(iii) A(ξ, π) = ξ, if ξ is a linear vector field;
(iv) F (ξ, η, α) = O(ε);
(v) P (π)(1⊗ f) = P (π)(f ⊗ 1) = f ;
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(vi) A(ξ, π)1 = 0.

Equations i) and v) where already introduced in Definition 2.1 as two
of the defining conditions of a star product, while the ones involving A

are used to construct a connection D on sections of E.
A section f ∈ Γ(E) is given locally by a map x → fx where for

every y, fx(y) is a formal power series whose coefficients are infinite
jets. On the space of such sections we can introduce a deformed product
� which will give us the desired star product on C∞(M) once we identify
horizontal sections with ordinary functions. Denoting analogously by πx

the push-forward by φ−1
x of the Poisson bivector π on Rd, we can define

the deformed product through the formal bidifferential operator P (πx)
in the same way as P (π) represents the usual star product:

(f � g)x(y) := fx(y) gx(y) + ε πij
x (y)

∂fx(y)
∂yi

∂gx(y)
∂yj

+ O(ε2).

We can define the connection D on Γ(E) by

(D f)x = dxf + AM
x f

where dxf is the de Rham differential of f regarded as a function with
values in R[[y1, . . . , yd]][[ε]] and the formal connection 1-form is specified
by its action on a tangent vector ξ by

AM
x (ξ) = A(ξ̂x, πx)

where A is the operator defined in (34) evaluated on the multivector
fields ξ and π expressed in the local coordinate system given by φx.

The important point is that since the coefficients Uk of the formal-
ity map that appear in the definition of P and A are polynomial in the
derivatives of the coordinate of the arguments ξ and π, all results holding
for P (π) and A(ξ, π) are inherited by their formal counterparts. In par-
ticular equalities i) and v) above (together with the formality theorem
from which they are derived) ensure that � is an associative deforma-
tion of the pointwise product on sections and equalities ii) and iii) can
be used to prove that D is indeed independent of the choice of φ and
therefore induces a global connection on E.

We can finally extend D and � by the (graded) Leibniz rule to the
whole complex of formal differential forms Ω•(E) = ΩM ⊗C∞(M) Γ(E)
and use (35) to verify the following

Lemma 6.1 Let FM be the E-valued 2-form given by x → FM
x where

FM
x (ξ, η) = F (ξ̂x, η̂x, πx) for any pair of vector fields ξ, η. Then FM
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represent the curvature of D and the two are related to each other and
to the star product by the usual identities:

a) D(f � g) = D(f) � g + f � D(g);
b) D2(·) =

[
FM �, ·

]
;

c) D FM = 0

Proof The identities follow directly from the relations (35), in which the
star commutator [ f �, g ] = f � g − g � f is already implicitly defined,
once we identify the complex of formal multivector fields endowed with
the differential δ with the complex of formal multidifferential operators
with the de Rham differential. The map that realizes this isomorphism
is explicitly defined in [13].

A connection D satisfying the above relations on a bundle E of as-
sociative algebras is called a Fedosov connection with Weyl curvature F :
it is the kind of connection Fedosov introduced to give a global con-
struction in the symplectic case. Following Fedosov, the last step to the
required globalization is to deform D into a new connection D which en-
joys the same properties and moreover has zero Weyl curvature, so that
we can define the complex Hk(E,D) and in particular the (sub)algebra
of horizontal sections H0(E,D).

The construction of D relies on the following Lemmata.

Lemma 6.2 Let D be a Fedosov connection on E with Weyl curvature
F and γ an E-valued 1-form, then

D := D + [ γ �, · ]

is also a Fedosov connection whose Weyl curvature is F = F +D γ+γ�γ.

Proof For any given section f , a direct computation shows

D
2
f = [F �, f ] + D[ γ �, f ] + [ γ �, Df ] + [ γ �, [ γ �, f ] ] =

= [F �, f ] + [Dγ �, f ] + [ γ �, [ γ �, f ] ] =
[

F + D γ +
1
2
[ γ �, γ ] �, f

]
where the last equality follows from the Jacobi identity for the star
commutator, since every associative product induces a Lie bracket given
by the commutator.
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Applying D on the new curvature, we can check explicitly that

D
(
F + D γ +

1
2
[ γ �, γ ]

)
= D2γ +

1
2
[ Dγ �, γ ]− 1

2
[ γ �, Dγ ] + [ γ �, F + Dγ ]

= [F �, γ ] + [ γ �, F ]

= 0

where we made use again of the (graded) Jacobi identity and of the
(graded) skew-symmetry of [ �, ].

Lemma 6.3 Let D be a Fedosov connection on a bundle E = E0[[ε]] and
F its Weyl curvature and let

D = D0 + εD1 + · · · and F = F0 + εF1 + · · ·

be their expansions as formal power series. If F0 = 0 and the second
cohomology of E0 w.r.t. D0 is trivial, there exist a 1-form γ such that
D has zero Weyl curvature.

Proof By the previous Lemma, the claim is equivalent to the existence
of a solution to the equation

F = F + D γ +
1
2
[ γ �, γ ] = 0.

A solution can be explicitly constructed by induction on the order
in ε, starting from γ0 = 0 and assuming that γ(k) is a solution
mod εk+1. We can thus add to F

k
= F + D γ(k) + 1

2

[
γ(k) �, γ(k)

]
the next term εk+1D0 γk+1 to get F

(k+1)
modulo higher terms. From

DF
(k)

+
[
γ(k) �, F

(k)
]

= 0 and the induction hypothesis F
(k)

= 0

mod εk+1 we get D0 F
(k)

= 0. Since now H2(E0,D0) = 0, we can invert
D0 to define γk+1 in terms of the lower order terms F

(k)
in such a way

that F
(k+1)

= 0 is satisfied mod εk+2, thus completing the induction
step.

Since in our case D is a deformation of the natural flat connection D0

on sections of the bundle of infinite jets, the hypothesis of the previous
Lemma are satisfied and we can actually find a flat connection D which
is still a good deformation of D0.

A last technical Lemma gives us an isomorphism between the algebra
of the horizontal sections H0(E,D) and its non-deformed counterpart
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H0(E0,D0), which in turn is isomorphic to the Poisson algebra C∞(M):
this concludes the globalization procedure.

Only recently, Dolgushev [18] gave a new proof of Kontsevich’s formal-
ity theorem for a general manifold. The main difference in this approach
is that it is based on the use of covariant tensors unlike Kontsevich’s
original proof, which is based on ∞-jets of multidifferential operators
and multivector fields and is therefore intrinsically local. In particular,
he gave a solution of the deformation quantization problem for an arbi-
trary Poisson orbifold.
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45. J. Vey, “Déformation du crochet de Poisson sur une variété symplec-
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Introduction

The purpose of these lectures is to provide a quick introduction to a part
of the theory of Lie groupoids, and to present some of their algebraic
invariants, in particular the fundamental group and the equivariant sheaf
cohomology.

In many different areas of mathematics, an increasingly important
role is played by groupoids with some extra structure (smooth group-
oids, groupoids in schemes, simplicial groupoids, symplectic groupoids,
quantum groupoids, etc.). Many of the constructions and results to be
presented here translate easily from one context to the other, and we
hope that our introductory text will be of some use to students in differ-
ent fields. For a detailed discussion of the role of groupoids in symplectic
and Poisson geometry, we refer the reader to the contribution to this vol-
ume by Bursztyn and Weinstein [9], and the references cited there.

Groupoids often represent not-so-nice ‘quotients’ of nice structures,
such as leaf spaces of foliations, stacks or orbifolds. Here the represent-
ing groupoids are usually only defined up to a weak ‘Morita’ equiva-
lence, and it is this kind of equivalence which is playing a leading role
in our lectures. The invariants we introduce (various cohomologies and
the fundamental group) are all functorial and stable under this Morita
equivalence. Thus it is natural to try and modify the category of Lie
groupoids in such a way that the equivalences are turned into isomor-
phisms. It is known from various contexts (leaf spaces, toposes, stacks,
cf. the introduction to Chapter 2) that it is possible to do so, and we
give a precise treatment of it in the last two sections of Chapter 2.

In Chapter 3 we introduce the category of equivariant sheaves over a
groupoid, as well as associated ‘derived’ categories, and prove some of the
basic properties of these categories. This is also the natural context to
discuss the fundamental group of a Lie groupoid, since it represents the
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category of those equivariant sheaves which are locally constant. Chapter
4 then discusses general sheaf cohomology, while sheaf cohomology with
compact supports is discussed in Chapter 5.

Much of the material presented here appeared earlier in various other
sources mentioned explicitly below, and our only purpose was to give a
more systematic and hopefully more easily accessible exposition. Explicit
references are given at the beginning of each chapter. The exposition in
Chapters 4 and 5 closely follows the one outlined in [45].

There are three things in this paper, however, which are new, or at
least have not been published earlier in this form. First, in our treatment
of the category of generalized morphisms between Lie groupoids, we give
an explicit proof that the category whose morphisms are principal bun-
dles is isomorphic to the category obtained by universally inverting the
weak equivalences. Secondly, as far as we know, there is some novelty in
our treatment of the fundamental groupoid of an arbitrary Lie group-
oid, together with the proof that this provides a left adjoint into the
category of those Lie groupoids which are weakly equivalent to discrete
groupoids. It is a good illustration of the principle that the category of
Lie groupoids is large enough to contain manifolds as well as discrete
groups, and hence should be a good setting to adequately express the
universal properties of the fundamental group functor. We also give a
concrete application to codimension 1 foliations of our approach. Thirdly,
the material in Section 4.4 is new. Here, for a foliated manifold (M,F),
we compare the cohomology of the underlying manifold with that of
the holonomy (or monodromy) groupoid of the foliation. It answers a
question of Haefliger at the Boulder conference1 in 1999, which could be
paraphrased as: when does the manifold M itself behave like the classi-
fying space B(Hol(M,F)) of the foliation? We give an answer based on
change-of-base properties of the cohomology of étale groupoids.

We would like to thank the Organizers of the Euroschool for invit-
ing us to give the series of lectures and write this contribution. In our
work on subjects related to this exposition over the years, we have bene-
fited from our discussions with many colleagues, including H. Bursztyn,
M. Crainic, W.T. van Est, A. Haefliger, A. Kumjian, N.P. Landsman,
K.C.H. Mackenzie, D. Pronk and A. Weinstein. We acknowledge finan-
cial support from the Dutch Science Foundation (NWO) and the Slove-
nian Ministry of Science (MŠZŠ grant J1-3148).

1 see http://pompeiu.imar.ro/∼ramazan/groupoid/open prb/gop.html
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Lie groupoids

In this chapter we give a short introduction to the theory of Lie group-
oids. We also recall some of the most important constructions and ex-
amples, such as the holonomy groupoid of a foliation [26, 61]. Group-
oids were first mentioned in the work of Brandt from the beginning of
the twentieth century. Haefliger [23] already used étale Lie groupoids
and pseudogroups to describe the transversal structure of foliations, and
later Lie groupoids turned out to be one of the most adequate geometric
models for non-commutative geometry (Connes [12]).

This chapter closely follows our presentation at the Euroschool, and
much of it is taken directly from [48] where the reader can find more
details. Sections 2.5 and 2.6 on the category of generalized morphisms
and principal bundles were originally written (several years ago) as part
of [48], but not included in the final version.

In our presentation, we have emphasized the notion of weak equiva-
lence between Lie groupoids. A Lie groupoid may be viewed as a formal
quotient of a manifold, such as the formal space of leaves of a foliation,
where all the information can be lost if one takes the usual topologi-
cal quotient. Weak equivalence is the equivalence relation between Lie
groupoids, which, intuitively speaking, identifies Lie groupoids which
represent the same quotient. For example, for an action of a discrete
group on a manifold, a representation of the ‘space of orbits’ which is
more refined than the topological orbit space is provided by the action
groupoid of the action, as well as by any groupoid weakly equivalent
to this action groupoid. However, if the action is free and proper, there
is nothing wrong with the usual quotient, which is in this case weakly
equivalent to the action groupoid. Another example, to be discussed in
Section 2.2, is the étale holonomy groupoid of a foliation, which is deter-
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mined by a choice of a complete transversal section, but different choices
of this section give us weakly equivalent groupoids.

This idea leads to the consideration of a category of groupoids in
which weakly equivalent groupoids are identified – more precisely, a
category where weak equivalences are turned into isomorphisms. The
‘generalized’ morphisms in this new category can be described more ex-
plicitly in terms of certain types of principal bundles. These bundles
will be discussed in Section 2.5, while the fact that the resulting cat-
egory is precisely the one obtained by turning weak equivalences into
isomorphisms will be proved in Section 2.6.

Historically, the explicit construction of this category of Lie group-
oids and generalized morphisms (and of similar categories, of topological
groupoids or groupoids in schemes, for example), came up naturally and
independently in various contexts. For example, Hilsum and Skandalis
[30] considered such generalized morphisms between leaf spaces of fo-
liations, and in a closely related context, so did Haefliger [26] between
étale groupoids or pseudogroups, and Muhly-Renault-Williams [52] con-
sidered generalized (iso)morphisms in the context of groupoids and C ∗-
algebras. In a different context, based on the observation that weakly
equivalent groupoids define the same ‘orbit topos’, Moerdijk [41, 42] in-
troduced a category of groupoids and generalized morphisms and proved
that this category was equivalent to the category of toposes. Here, one
also finds the first explicit statement of the universal property of this
category, in terms of ‘categories of fractions’. A systematical treatment
of the generalized morphisms as principal bundles in the context of topo-
logical groupoids, and in particular the proof that groupoids are weakly
equivalent if and only if there is a generalized isomorphism between
them, appears in Mrčun [50, 51].

The category of groupoids and generalized morphisms appears in yet
another way in algebraic geometry, notably in the context of Deligne-
Mumford stacks [17]. In fact, the category of such stacks can again be
described in terms of groupoids and generalized morphisms. A more re-
fined ‘bicategorical’ version of the universal property of generalized mor-
phisms between groupoids is proved in Pronk [54], who also elaborates
the relation to differentiable stacks.

The viewpoint that generalized morphisms are the ‘correct ones’ be-
tween groupoids, and the use of principal bundles as a tool to study
these morphisms, is by now very common, and discussed and exploited
in many sources, see e.g. [8, 13, 28, 34, 35, 40, 59].
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2.1 Lie groupoids and weak equivalences

A groupoid is a small category in which every arrow is invertible. A
groupoid G thus consists of two sets, a set of objects G0 and a set of
arrows G1. Each arrow g of G has two objects assigned to it, its source
s(g) and its target t(g). We write g : x → x′ to indicate that x = s(g)
and x′ = t(g). There is an associative multiplication of such arrows for
which source and target match, giving an arrow g′g : x → x′′ for any two
arrows g : x → x′ and g′ : x′ → x′′. For any object x there is the unit
1x : x → x, and each arrow g : x → x′ has its inverse arrow g−1 : x′ → x.

These operations in a groupoid G can be viewed as structure maps of
G relating the sets G0 and G1, namely the source map s: G1 → G0, the
target map t: G1 → G0, the (partial) multiplication map G1 ×G0 G1 →
G1, (g′, g) �→ g′g (defined for the arrows g′, g of G with s(g′) = t(g)), the
unit map G0 → G1, x �→ 1x, and the inverse map G1 → G1, g �→ g−1.

Sometimes we say that G is a groupoid over G0. For any x, x′ ∈ G0

we denote

G(x, x′) = {g ∈ G1 | s(g) = x, t(g) = x′} .

For any arrow g : x → x′ we may say that g is an arrow from x to x′.
Next, we denote the fibers of s and t by G(x, - ) = s−1(x) and G( - , x′) =
t−1(x′). The set of arrows from x to x is a group, called the isotropy group
of G at x, and denoted by

Gx = G(x, x) .

A well-known example of a groupoid is the fundamental groupoid of
a manifold M . The set of objects of this groupoid is M , the arrows from
x ∈ M to x′ ∈ M are the homotopy classes of paths (relative to end-
points) in M from x to x′, and the partial multiplication is induced by
the concatenation of paths.

A homomorphism between groupoids H and G is a functor φ : H → G.
It is given by a map on objects H0 → G0 and a map on arrows H1 → G1,
both denoted again by φ, which together preserve the groupoid structure,
i.e. commute with all the structure maps.

A Lie groupoid is a groupoid G together with the structure on G0 of a
smooth Hausdorff second-countable manifold and the structure on G1 of
a (perhaps non-Hausdorff, non-second countable) smooth manifold, such
that the source map of G is a smooth submersion with Hausdorff fibers
and all the structure maps of G are smooth. Note that the domain of the
multiplication map, G2 = G1 ×G0 G1, has a natural smooth manifold
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structure because the source map is a submersion. Also note that it
follows that the target map of G is a submersion as well.

Here, we allowed explicitly that G1 may be non-Hausdorff and non-
second countable, as this situation arises in our main examples. A Lie
groupoid G is called Hausdorff if the manifold of arrows G1 is also Haus-
dorff. (On some rare occasions, we will use constructions which will lead
to groupoids having a non-Hausdorff base manifold.)

A homomorphism between Lie groupoids H and G is a functor φ :
H → G which is smooth both on objects and on arrows. We say that
φ is a submersion if φ : H1 → G1 is a submersion; this implies that
φ : H0 → G0 is also a submersion. Lie groupoids and homomorphisms
between them form a category, which we shall denote by Gpd.

A homomorphism φ : H → G between Lie groupoids is a weak equiv-
alence if the map t ◦ pr1 : G1 ×G0 H0 → G0, sending a pair (g, y) with
s(g) = φ(y) to t(g), is a surjective submersion, and the square

H1

(s,t)

��

φ
�� G1

(s,t)

��

H0 ×H0
φ×φ

�� G0 ×G0

is a fibered product of manifolds. Two Lie groupoids G and G′ are weakly
equivalent if there exist weak equivalences φ : H → G and φ′ : H → G′ for
some third Lie groupoid H. This defines an equivalence relation between
Lie groupoids. If G and G′ are weakly equivalent Lie groupoids, we
may in fact find a Lie groupoid H and weak equivalences H → G and
H → G′ which are surjective submersions on objects (see [48]). As we
will see, many important properties of Lie groupoids are stable under
weak equivalence.

Let G be a Lie groupoid, and x ∈ G0. The source and the target
map of G are submersions, therefore the fibers G(x, - ) = s−1(x) and
G( - , x) = t−1(x) are closed submanifolds of G1. The isotropy group Gx

is a Lie group (see for example [37, 48]), and acts freely and transitively
on G(x, - ) from the right along the fibers of tx = t|G(x, - ). The orbit of
G passing through x is by definition

Gx = t(G(x, - )) ⊂ G0

with the quotient topology and the smooth structure of G(x, - )/Gx,
which makes it into an immersed submanifold of G0. With this smooth
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structure on Gx, the map tx : G(x, - ) → Gx becomes a smooth principal
Gx-bundle.

The orbits of G form a pair-wise disjoint partition of the manifold
G0. The quotient space of G0 with respect to this partition is called the
space of orbits of G, and denoted by G0/G or by |G|.

Examples 2.1 (1) Any manifold M can be viewed as a Lie groupoid
over M in which all the arrows are units, i.e. the manifold of arrows is
also M . We denote this Lie groupoid again by M , and refer to as the
unit groupoid associated to M .

(2) Any manifold M gives rise to another Lie groupoid Pair(M) over
M , called the pair groupoid of M , with arrows Pair(M)1 = M ×M . The
source and the target map are the first and the second projection. The
multiplication is unique, because for any x, x′ ∈ M there is exactly one
arrow from x to x′.

The homomorphism Pair(M) → 1 to the trivial one-point groupoid
consisting of one object and one arrow, is a weak equivalence.

Note that any smooth map p : N → M induces a homomorphism of
pair groupoids p : Pair(N) → Pair(M) in the obvious way. Furthermore,
if p is a submersion we may define the kernel groupoid Ker(p) over N ,
which is a Lie subgroupoid of Pair(N), consisting of all pairs (y, y′) ∈
N ×N with p(y) = p(y′), i.e. Ker(p)1 = N ×M N .

Suppose that p : N → M is a surjective submersion. The map p then
induces a weak equivalence Ker(p) → M , where we view M as the unit
groupoid (example (1)). A particular case of this is where N =

∐
i Ui

is the disjoint union of an open cover {Ui} of M , and p is the evident
map. Then Ker(p) takes the form∐

i,j

Ui ∩ Uj ⇒
∐

i

Ui .

(3) Any Lie group G can be viewed as a Lie groupoid over a one-point
space, and with G as the manifold of arrows. We shall denote this Lie
groupoid again by G.

(4) If G is a Lie group acting smoothly from the left on a manifold
M , we define the associated action groupoid G � M over M in which
(G�M)1 = G×M . The source map is the second projection, the target
is given by the action map, and the multiplication is defined by

(g′, x′)(g, x) = (g′g, x) .

The semi-direct product symbol is used because this construction is a
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special case of the semi-direct product construction described in Section
2.4.

(5) Let M be a manifold. The fundamental groupoid Π(M) of M is
a Lie groupoid over M in which the arrows from x ∈ M to y ∈ M are
the homotopy classes of paths (relative end-points) in M from x to y,
while the multiplication is induced by the concatenation of paths. It is
not difficult to see that Π(M)1 has indeed a natural smooth structure
such that Π(M) is a Lie groupoid.

(6) Let E be a vector bundle over a manifold M . One can define a
Lie groupoid GL(E) over M such that the arrows from x ∈ M to y ∈ M

are the linear isomorphisms Ex → Ey between the fibers of E.
(7) A Lie groupoid G is said to be transitive if the map (s, t) : G1 →

G0×G0 is a surjective submersion. This notion is obviously stable under
weak equivalences. An example of a transitive Lie groupoid over M is the
gauge groupoid associated to a (right) principal H-bundle π : P → M ,
for a Lie group H. The manifold of arrows of this groupoid is the orbit
space of the diagonal action of H on P × P , and the source and the
target map are induced by the composition of the first and the second
projection with π.

For any object x of a transitive Lie groupoid G over M , the inclusion

Gx −→ G

of the isotropy (Lie) group at x into G is a weak equivalence, the map
t : G(x, - ) → M is a principal Gx-bundle, and the gauge groupoid of
this principal Gx-bundle is isomorphic to G.

(8) A Lie groupoid G is proper if the map (s, t) : G1 → G0 × G0 is
a proper map between Hausdorff manifolds. Propriety is stable under
weak equivalence. Proper groupoids are closely related to orbifolds, see
Example 2.5 (6).

2.2 The monodromy and holonomy groupoids of a
foliation

In this section we will recall the important construction of the holon-
omy groupoid of a foliation, as well as that of the related monodromy
groupoid [23, 53, 61]. These groupoids play a central role in many of
the constructions of invariants of foliations, such as the characteristic
classes of (transversal) bundles, K-theory of C ∗-algebras of foliations,
and cyclic homology of foliations.
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Throughout this section (M,F) denotes a fixed foliated manifold.
Recall that each leaf L of F has a natural smooth structure for which
the inclusion L → M is an immersion. We now describe the two Lie
groupoids associated to the foliated manifold (M,F).

First, the monodromy groupoid Mon(M,F) is a groupoid over M

with the following arrows:

(a) if x, y ∈ M lie on the same leaf L of F , then the arrows in
Mon(M,F) from x to y are the homotopy classes (relative end-
points) of paths in L from x to y, while

(b) if x, y ∈ M lie on different leaves of F , there are no arrows be-
tween them.

The multiplication is induced by the concatenation of paths. In particu-
lar, the isotropy groups of the monodromy groupoid are the fundamental
groups of the leaves, i.e. Mon(M,F)x = π1(L, x) for any point x on a
leaf L.

The holonomy groupoid Hol(M,F) is defined analogously, except that
one takes the holonomy classes of paths [48, p. 23] as arrows instead of
the homotopy classes. The isotropy group Hol(M,F)x at a point x of M

on a leaf L is the holonomy group Hol(L, x) of L.
There are natural Lie groupoid structures on the monodromy and

the holonomy groupoid of a foliation such that the following proposition
holds true (cf. [15, 48]).

Proposition 2.2 Let F be a foliation of a manifold M . We have:
(i) The orbits of the monodromy and the holonomy groupoids of

(M,F) are exactly the leaves of F (with the leaf smooth structure).
(ii) The isotropy groups of the monodromy and the holonomy groupoid

of (M,F) are discrete.
(iii) For a point x on a leaf L, the target map of the monodromy

groupoid restricts to the universal covering Mon(M,F)(x, - ) → L.
(iv) For a point x on a leaf L, the target map of the holonomy group-

oid restricts to the covering Hol(M,F)(x, - ) → L corresponding to the
kernel of the holonomy homomorphism π1(L, x) → Hol(L, x).

(v) The quotient homomorphism of Lie groupoids Mon(M,F) →
Hol(M,F) is a local diffeomorphism, and restricts to a covering pro-
jection Mon(M,F)(x, - ) → Hol(M,F)(x, - ) for any x ∈ M .

Examples 2.3 (1) Let f : M → N be a surjective submersion with
connected fibers, and F the associated foliation of M . Then all the
leaves have trivial holonomy, and the holonomy groupoid of (M,F) is
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Ker(f) = M ×N M . If the fibers of f are simply connected, then this
groupoid is also the monodromy groupoid of (M,F).

(2) Let F be the Reeb foliation of S3. The compact leaf of F has
R2 for its holonomy cover, while any other leaf is itself diffeomorphic to
R2 and has trivial holonomy group. Since the fiber of the source map is
the holonomy cover of the corresponding leaf, the holonomy groupoid is
the same as the monodromy groupoid, and, as a set, it is the product
S3×R2. However, the topology of this space is not the product topology.
In fact, one can see that this groupoid is not Hausdorff.

(3) Let F be a Riemannian foliation on M . Then the derivative
Hol(M,F) → GL(N(F)) is an injective homomorphism. In particular,
the holonomy groupoid of a Riemannian foliation is Hausdorff.

2.3 Etale groupoids and foliation groupoids

An étale groupoid is a Lie groupoid G with dimG1 = dim G0. Equiv-
alently, a Lie groupoid is étale if its source map, and therefore all its
structure maps, are étale (i.e. local diffeomorphisms).

It follows that for an étale groupoid, the fibers of the source map, the
fibers of the target map, the isotropy groups and the orbits are discrete.
Any weak equivalence between étale groupoids G → H is an étale map
on objects and on arrows [54].

Lie groupoids which are weakly equivalent to étale groupoids are
called foliation groupoids. They can be characterized more intrinsically
as follows (cf. [15]):

Proposition 2.4 A Lie groupoid is a foliation groupoid if and only if
it has discrete isotropy groups.

Examples 2.5 (1) The unit groupoid of a smooth manifold is étale.
(2) A discrete group is an étale groupoid over a one-point space.
(3) If G is a discrete group acting on a manifold M , the associated

action groupoid G � M is étale.
(4) Let M be a manifold. The germs of locally defined diffeomor-

phisms f : U → V between open subsets of M form a groupoid over M :
the germ of f at x is an arrow from x to f(x), and the multiplication
in Γ(M) is induced by the composition of diffeomorphisms. There is a
natural sheaf topology and a smooth structure on Γ(M)1 such that the
structure maps of Γ(M) are étale. Thus Γ(M) is an étale groupoid. In
particular, the étale groupoid Γ(Rq) is referred to as the Haefliger group-
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oid, and denoted by Γq. The étale groupoid Γ(M) is weakly equivalent
to the Haefliger groupoid Γq with q = dimM .

(5) Let F be a foliation of a manifold M . From Proposition 2.4 and
Proposition 2.2 (ii) it follows that the monodromy and the holonomy
groupoid of (M,F) are foliation groupoids. This can be seen explicitly
as follows. We can choose a complete transversal section S of (M,F), i.e.
an immersed submanifold of M of dimension equal to the codimension
of F which is transversal to the leaves of F and intersects any leaf in at
least one point. Denote by ι : S → M the inclusion.

We can now define a Lie groupoid MonS(M,F) over S as the re-
striction of the monodromy groupoid Mon(M,F) to S: the arrows of
MonS(M,F) are those arrows of Mon(M,F) which start and end in the
submanifold S. It is easy to see that MonS(M,F) is indeed a Lie group-
oid because the composition t ◦ pr1 : Mon(M,F)1×M S → M is a surjec-
tive local diffeomorphism. (This groupoid can also be seen as the induced
groupoid of Mon(M,F) along ι, i.e. MonS(M,F) = ι∗(Mon(M,F)), see
Section 2.4.)

In particular, note that dim MonS(M,F)1 = dim S, so the groupoid
MonS(M,F) is étale. It is referred to as the étale monodromy groupoid
over S associated to (M,F). The inclusion MonS(M,F) → Mon(M,F)
is a weak equivalence. For any point x ∈ S on a leaf L of F we have

MonS(M,F)x = Mon(M,F)x = π1(L, x) .

In a completely analogous way we define the étale holonomy groupoid
HolS(M,F) over S, weakly equivalent to Hol(M,F), as the restriction
of the holonomy groupoid Hol(M,F) to S. Note that for any x ∈ S we
have

HolS(M,F)x = Hol(M,F)x = Hol(L, x) ,

where L is the leaf of F through x.
(6) Proper foliation groupoids (Example 2.1 (8)) are called orbifold

groupoids. Orbifolds can be represented as weak equivalence classes of
orbifold groupoids (for details and further references, see [28, 36, 46]).

Remark. If G is a foliation groupoid, its orbits form a foliation F of
G0, and one says that G ‘integrates’ F . The holonomy and monodromy
groupoids of F are extreme integrals of F , in the sense that if the fibers
of the source map of G are connected, there are canonical surjective local
diffeomorphisms Mon(G0,F) → G → Hol(G0,F) (cf. [15]).
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Let G be an étale groupoid. There is a canonical homomorphism of
Lie groupoids

Eff : G −→ Γ(G0) ,

which is the identity on objects and is given on arrows by

Eff(g) = germs(g)(t ◦(s|U )−1) ,

where g ∈ G1 and U is any open neighbourhood of g in G1 such that
both s|U and t|U are injective. The map Eff : G1 → Γ(G0)1 is a local
diffeomorphism. An effective groupoid is an étale groupoid for which the
homomorphism Eff is injective (on arrows). The image Eff(G) of Eff is
an open subgroupoid of Γ(G0) and hence effective; it is referred to as
the effect of G.

Remarks 2.6 (1) The class of effective groupoids is stable under weak
equivalences among étale groupoids. In other words, if two étale group-
oids are weakly equivalent, then one is effective if and only if the other
is too.

(2) The construction of the effect of an étale groupoid can be used to
compute the holonomy groupoid of foliations. Indeed, let F be a foliation
of M , and let S be a complete transversal of F . Recall that for any two
points x, y ∈ S on the same leaf L of F , the arrows in MonS(M,F) from
x to y are the homotopy classes of paths from x to y inside L. But the
holonomy class of such a path α may be faithfully represented by the
germ of a locally defined diffeomorphism on S, namely by holS,S(α). It
follows that the effect homomorphism of MonS(M,F) is given by the
holonomy MonS(M,F) → Γ(S), and

Eff(MonS(M,F)) = HolS(M,F) .

In particular, the étale holonomy groupoid HolS(M,F) is effective.
(3) Let f : M → N be a surjective submersion with connected fibers,

and F the associated foliation of M . Then the étale holonomy groupoid
is weakly equivalent to the manifold N (regarded as a unit groupoid).

(4) If an orbifold groupoid (Example 2.5 (6)) is weakly equivalent
to an effective groupoid, it represents a classical reduced orbifold as
introduced by Satake [55].
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2.4 Some general constructions

In this section we will define transformations between homomorphisms of
Lie groupoids, and discuss some ways of constructing new Lie groupoids
out of given ones (cf. [29]).

Induced groupoids. Let G be a Lie groupoid and φ : M → G0 a
smooth map. Then one can define the induced groupoid φ∗(G) over M

in which the arrows from x to y are the arrows in G from φ(x) to φ(y),
i.e.

φ∗(G)1 = M ×G0 G1 ×G0 M ,

and the multiplication is given by the multiplication in G. The space
φ∗(G)1 can be constructed by two pull-backs as in the diagram

φ∗(G)1 ��

��

M

φ

��

G1 ×G0 M
pr1 ��

��

G1

s

��

t �� G0

M
φ

�� G0

The lower pull-back has a natural smooth structure because s is a sub-
mersion. If the composition t ◦ pr1 is also a submersion, the upper pull-
back has a natural smooth structure as well. It follows that the diagram

φ∗(G)1 ��

(s,t)

��

G1

(s,t)

��

M ×M
φ×φ

�� G0 ×G0

is a pull-back. Therefore φ∗(G) is a Lie groupoid if the map

t ◦ pr1 : G1 ×G0 M −→ G0

is a submersion.
Suppose that this map is a submersion. Then φ induces a homomor-

phism of Lie groupoids φ : φ∗(G) → G, which is a weak equivalence if and
only if the submersion t ◦ pr1 is surjective. If G is a foliation groupoid,
then so is φ∗(G). If G is proper, then φ∗(G) is also proper.

Transformations. For two homomorphisms φ, ψ : G → H of Lie group-
oids, a smooth natural transformation (briefly transformation) from φ to
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ψ is a smooth map

T : G0 −→ H1

such that for each x ∈ G0, T (x) is an arrow from φ(x) to ψ(x) in H,
and for each arrow g : x → y in G the square

φ(x)
T (x)

��

φ(g)

��

ψ(x)

ψ(g)

��

φ(y)
T (y)

�� ψ(y)

commutes. We write T : φ → ψ to indicate that T is such a transforma-
tion from φ to ψ.

If T : φ → ψ and R : ψ → ρ are two transformations, so is their
product RT : φ → ρ given by RT (x) = R(x)T (x). In particular, the
homomorphisms from G to H are themselves the objects of a groupoid
with transformations as arrows. We will denote this groupoid by

Hom(G,H) .

In fact, Lie groupoids, homomorphisms and transformations form a 2-
category.

Sums and products. For two Lie groupoids G and H one can construct
the product Lie groupoid

G×H

in the obvious way, by taking the product manifolds G0×H0 and G1×H1.
In a similar way one constructs the sum (disjoint union) Lie groupoid

G + H .

In fact, one can construct the sum Lie groupoid∑
i

Gi

of a (countable) indexed family (Gi) of Lie groupoids. The sums and
products have familiar universal property in the category Gpd (in fact,
also in the 2-category) of Lie groupoids and homomorphisms.

If G and H are foliation (or étale, or proper) groupoids, then so are
G×H and G + H.

Strong fibered products. For two homomorphisms φ : G → K and
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ψ : H → K one can construct the fibered products of the sets of objects
and arrows:

(G×K H)0 = G0 ×K0 H0 = {(x, y) |x ∈ G0, y ∈ H0, φ(x) = ψ(y)}

(G×K H)1 = G1 ×K1 H1 = {(g, h) | g ∈ G1, h ∈ H1, φ(g) = ψ(h)} .

With multiplication defined component-wise, this defines a groupoid

G×K H .

However, in general this is not a Lie groupoid. It is if the fibered products
G0×K0 H0 and G1×K1 H1 are transversal. For example, for G0×K0 H0

this means that the map φ × ψ : G0 ×H0 → K0 ×K0 is transversal to
the diagonal ∆: K0 → K0 ×K0, so that G0 ×K0 H0 = (φ× ψ)−1(∆K0)
is indeed a manifold.

If the transversality condition is satisfied, this construction gives a
fibered product (pull-back) with the familiar universal property in the
category Gpd. Below we will consider an alternative, larger fibered prod-
uct. To emphasize the distinction, we often refer to the present fibered
product as the strong one.

Weak fibered products. Let φ : G → K and ψ : H → K be homomor-
phisms of Lie groupoids. We define a new groupoid P as follows: Objects
of P are triples (x, k, y), where x ∈ G0, y ∈ H0 and k ∈ K(φ(x), ψ(y)).
Arrows in P from (x, k, y) to (x′, k′, y′) are pairs (g, h) of arrows g ∈ G1

and h ∈ H1 such that

k′φ(g) = ψ(h)k .

The multiplication is given component-wise. Often (but not always) P

has a structure of a Lie groupoid. Indeed, the set of objects may be
considered as the fibered product

P0 = G0 ×K0 K1 ×K0 H0 ,

and if this fibered product is transversal then P0 inherits a natural struc-
ture of a submanifold of G0 × K1 × H0. This is the case, for example,
when either φ : G0 → K0 or ψ : H0 → K0 is a submersion. If P0 has a
manifold structure as above, then

P1 = G1 ×K0 K1 ×K0 H1 = {(g, k, h) |φ(s(g)) = s(k), ψ(s(h)) = t(k)}

is also a manifold. Indeed, in this case P1 can be obtained from the two
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fibered products

G1 ×K0 K1 ×K0 H1
��

��

H1

s

��

G1 ×K0 K1 ×K0 H0
��

��

G0 ×K0 K1 ×K0 H0

pr1

��

pr3 �� H0

G1
s �� G0

(1)

Thus, in this case P is a Lie groupoid, provided P0 is Hausdorff (e.g. if
K is Hausdorff). We refer to this groupoid P as the weak pull-back or
the weak fibered product, and we denote it by

G×(w)
K H .

We will use weak fibered products more often than strong ones, and if
not stated explicitly otherwise, ‘fibered product’ from now on will refer
to the weak one, and will be simply denoted as G×K H.

We remark that if G and H are both foliation groupoids, respectively
proper groupoids or étale groupoids, and if the weak fibered product
G ×K H is a Lie groupoid, then G ×K H is also a foliation groupoid,
proper groupoid or étale groupoid.

Comma groupoids. (i) Let G be a Lie groupoid and x ∈ G0. We can
view x as a homomorphism 1 → G where 1 is the unit groupoid of a
one-point space. The weak fibered product of x : 1 → G and id : G → G

can be described as the groupoid over G(x, - ) = s−1(x) whose arrows
from g ∈ G(x, - ) to g′ ∈ G(x, - ) are the arrows h : y → y′ in G with
hg = g′. This a Lie groupoid, denoted by x/G and called the comma
groupoid of x over G.

(ii) Similarly, for a homomorphism φ : H → G and x ∈ G0 one can
form the comma groupoid

x/φ

as the weak fibered product of x : 1 → G and φ : H → G. It can be
identified with the groupoid whose objects are pairs (g, y) where y ∈ H0

and g : x → φ(y) in G, and whose arrows h : (g, y) → (g′, y′) are arrows
h : y → y′ in H with φ(h)g = g′. This comma groupoid x/φ is a Lie
groupoid if φ is a submersion. One refers to x/φ as the fiber of φ over x

(or sometimes as the weak fiber or homotopy fiber, to distinguished it
from the ‘strict’ fiber φ−1(x)).
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(iii) For φ : H → G there is also a larger comma groupoid

H/φ

whose objects are pairs (g, y) with g ∈ G1 and y ∈ H0 such that φ(y) =
t(g). Arrows (g, y) → (g′, y′) are pairs (h, f) where f : s(g) → s(g′)
in G and h : y → y′ in H are such that g′f = φ(h)g. This groupoid
can be constructed as the weak fibered product of φ and the identity
id : G → G. It is always a Lie groupoid.

Semi-direct products. Let G be a Lie groupoid.
(i) A left action of G on a manifold N along a smooth map ε : N → G0

is given by a smooth map µ : G1 ×G0 N → N (we write µ(g, y) = gy),
defined on the pull-back G1×G0 N = {(g, y) | s(g) = ε(y)}, which satisfies
the following identities: ε(gy) = t(g), 1ε(y)y = y and g′(gy) = (g′g)y, for
any g′, g ∈ G1 and y ∈ N with s(g′) = t(g) and s(g) = ε(y). For such an
action one can form the action groupoid

G � N

over N with (G � N)1 = G1 ×G0 N , exactly as for Lie group actions
(Example 2.1 (4)). This groupoid is a Lie groupoid, also referred to as
semi-direct product groupoid of the G-action.

We define the quotient G\N as the space of orbits of the groupoid
G � N . This space is in general not a manifold.

(ii) A right action of G on N is defined analogously, and such an
action gives a semi-direct product N � G and space of orbits N/G.

(iii) There is also a notion of a (left) action of a Lie groupoid G on
another Lie groupoid H. It is given by two (left) actions of G on H1

and on H0, such that the groupoid structure maps of H are equivariant,
i.e. compatible with the actions by G (note that the diagonal action
of G on the domain of the multiplication map is well-defined). If we
denote the action maps on Hi by εi : Hi → G0 and µi : G1×G0 Hi → Hi,
i = 0, 1, this implies in particular that ε0 ◦ s = ε1 = ε0 ◦ t. Thus the fibers
Hx = ε−1

1 (x) are full subgroupoids of H over ε−1
0 (x), x ∈ G0. These are

Lie groupoids if ε0 is a submersion, and for each arrow g ∈ G1(x′, x) the
action provides an isomorphism Hx′ → Hx of Lie groupoids.

For such an action of G on H, one can form the semi-direct product
groupoid

G � H

over H0. For y, y′ ∈ H0, an arrow from y′ to y in G � H is a pair (g, h),
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where g is an arrow in G(ε0(y′), ε0(y)) and h is an arrow in H(gy′, y) ⊂
Hε0(y). These arrows compose by the usual formula

(g, h)(g′, h′) = (gg′, h(gh′)) .

The groupoid G � H has the natural structure of a Lie groupoid, as one
sees, e.g. when the space of arrows is considered as the fibered product

H1 ×G0 G1 = {(h, g) | ε0(t(h)) = t(g)} .

2.5 Principal bundles as morphisms between Lie
groupoids

We begin by extending the notion of a principal G-bundle for Lie groups
to the case where G is a Lie groupoid.

Let G be a Lie groupoid. A G-bundle over a manifold M is a manifold
P equipped with a map π : P → M and a smooth right G-action µ on P

(along ε : P → G0) which is fiber-wise with respect to π, i.e. π(pg) = π(g)
for any p ∈ P and any g ∈ G1 with ε(p) = t(g). Such a bundle P is said
to be principal if

(i) π is a surjective submersion, and
(ii) the map (pr1, µ) : P ×G0 G1 → P ×M P , sending (p, g) to (p, pg),
is a diffeomorphism.

Note that in case G is a Lie group we recover the usual notion of a
principal G-bundle.

For a principal G-bundle π : P → M , we refer to the manifold P as the
total space of the bundle, and we shall denote by δ : P ×M P → G1 the
map pr2 ◦(pr1, µ)−1. This map is uniquely determined by the identity
pδ(p, p′) = p′ and satisfies the equation δ(p, p′)g = δ(p, p′g).

An equivariant map between principal G-bundles π : P → M and
π′ : P ′ → M over M is a smooth map f : P → P ′ which commutes with
all the structure maps, i.e. the identities π′(f(p)) = π(p), ε′(f(p)) = ε(p)
and f(pg) = f(p)g hold for any p ∈ P and g ∈ G1 with ε(p) = t(g).

Remarks 2.7 (1) The space G1 of arrows of a Lie groupoid G carries
the structure of a principal G-bundle over G0: for π one takes the target
map and for ε the source map, while the right action is given by the
multiplication in G. We call this bundle the unit bundle of G, and denote
it by U(G).

(2) If P is a principal G-bundle over M and f : N → M is a smooth
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map, the pull-back N ×M P has the structure of a principal G-bundle
over N . We denote this bundle by f∗(P ).

(3) Combining the previous two remarks, we see that for any map
α : M → G0 there is a principal G-bundle α∗(U(G)) over M . Its total
space is the space of pairs (m, g) where g is an arrow with target α(m).
Bundles which are isomorphic to one of this form are called trivial.

(4) Let P be a principal G-bundle over M . Take any point m ∈ M ,
and choose a local section σ : V → P of π defined on an open neighbour-
hood V of m. Let α = ε ◦σ : V → G0. Then the map α∗(U(G)) → P ,
which sends (m, g) to σ(m)g, is an isomorphism from the trivial bun-
dle α∗(U(G)) to the restriction PV = π−1(V ). Its inverse sends p to
(π(p), δ(σ(π(p)), p)). Thus, any principal bundle is locally trivial.

(5) Every equivariant map P → P ′ between principal G-bundles over
M is an isomorphism. In fact by (4) it is sufficient to check this for triv-
ial bundles. But for α, β : M → G0, a map f : α∗(U(G)) → β∗(U(G))
is completely determined by the map φ : M → G1 sending m to
pr2(f(m, 1α(m))), since

f(m, g) = f(m, 1α(m))g = (m,φ(m)g) .

Thus clearly f is an isomorphism, with inverse

f−1(m, g) = (m,φ(m)−1g).

We recall the following lemma from [48, p. 146].

Lemma 2.8 Let P be a principal G-bundle over M . Let Q be a manifold
with a right G-action, and f : Q → P a submersion preserving the G-
action. Then Q/G is a manifold and the quotient projection Q → Q/G

is a principal G-bundle.

Let G and H be Lie groupoids. A principal G-bundle over H is a
principal G-bundle π : P → H0 over the manifold H0,

P

π

��

ε �� G0

H0

which is equipped with a left H-action on P along π, which commutes
with the right G-action, i.e. ε(hp) = ε(p) and

(hp)g = h(pg)

for any h ∈ H1, p ∈ P and g ∈ G1 with s(h) = π(p) and ε(p) = t(g).
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We will think of such principal bundles as objects which represent
abstract morphisms between Lie groupoids, and we shall write

P : H −→ G

to indicate that P is a principal G-bundle over H.
A map P → P ′ between principal G-bundles over H is a map of

principal G-bundles over H0 which also respects the H-action. As we
have seen, any such map is an isomorphism.

With the idea of principal bundles as abstract morphisms in mind,
we now discuss identity morphisms and composition of morphisms.

Let G be a Lie groupoid. Then the unit principal G-bundle U(G) over
G0 has a natural left G-action, given by composition, and it is a principal
G-bundle over G. (In the notation above we have P = G1, π = t and
ε = s.) We denote this bundle again by

U(G) : G −→ G .

Let G, H and K be Lie groupoids. Suppose P : H → G is a principal
G-bundle over H and Q : K → H is a principal H-bundle over K. Then
we construct a principal G-bundle over K

Q⊗H P : K −→ G

as follows: The fibered product Q×H0 P carries a right H-action along
ε ◦ pr1 = π ◦pr2 given by

(q, p)h = (qh, h−1p) .

We denote its orbit space by Q⊗H P , and the orbit of (q, p) by q ⊗ p ∈
Q⊗H P . Since Q is a principal H-bundle over K0, Lemma 2.8 gives that
Q ⊗H P is a smooth manifold and Q ×H0 P → Q ⊗H P is a principal
H-bundle. Moreover, the fibered product Q×H0 P carries a left K-action
(along π ◦pr1 and on the Q-coordinate only) and a right G-action (along
ε ◦ pr2 and on the P -coordinate only). These two actions respect the H-
action, so they induce well-defined commuting actions on Q ⊗H P , by
K from the left and by G from the right,

k(q ⊗ p)g = kq ⊗ pg .

It remains to be proved that the right G-action is principal over K0.
To see this, denote the inverse of the diffeomorphism P ×G0 G1 →

P ×H0 P by (pr1, δ) and the inverse of the diffeomorphism Q×H0 H1 →
Q×K0 Q by (pr1, δ′). Then the map (Q⊗H P )×G0 G1 → (Q⊗H P )×K0
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(Q⊗H P ) has an inverse which sends a point (q ⊗ p, q′ ⊗ p′) into

(q ⊗ p, δ(p, δ′(q, q′)p′)) .

We observe that this tensor product is associative up to isomorphism.
Indeed, for R : L → K, Q : K → H and P : H → G, the evident map

R⊗K (Q⊗H P ) −→ (R⊗K Q)⊗H P

is an isomorphism of principal G-bundles over L. Furthermore, the unit
bundles act as units up to isomorphisms for this tensor product, by

U(H)⊗H P −→ P , P ⊗G U(G) −→ P .

For example, the first maps h ⊗ p into hp, and its inverse maps p into
1π(p)⊗p. Thus, Lie groupoids and isomorphism classes of principal bun-
dles with this tensor product form a well-defined category, as we already
suggested by the notation P : H → G. We will denote this category
GPD, and call the arrows in this category generalized morphisms, or
simply just morphisms between Lie groupoids. (These morphisms are
sometimes called Hilsum-Skandalis maps.) The category GPD is often
referred to as the Morita category of Lie groupoids.

To conclude this section, we discuss isomorphisms in the category
GPD. Following classical terminology from ring theory, we call a principal
G-bundle over H a Morita equivalence if ε : P → G0 is also (left) principal
as an H-bundle over G0. If such a P exists, we say that G and H are
Morita equivalent. Later (Corollary 2.12) we shall see that two groupoids
are Morita equivalent if and only if they are weakly equivalent. Here, we
will show the following (see [50, 51]):

Proposition 2.9 A principal G-bundle P over H represents an iso-
morphism in the category GPD if and only if P is a Morita equivalence.
Hence two Lie groupoids are Morita equivalent if and only if they are
isomorphic in the category GPD.

Proof (⇐) Suppose that P : H → G is a Morita equivalence. Write
P−1 : G → H for the ‘opposite’ bundle, namely the same manifold P

with left G-action ν(g, p) = pg−1 and right H-action µ(p, h) = h−1p.
Then there are isomorphisms

P ⊗G P−1 −→ U(H) , P−1 ⊗H P −→ U(G) .

For example, the second one maps p ⊗ p′ into δ(p, p′), where δ(p, p′) is
the unique arrow of G such that pδ(p, p′) = p′. One can easily check that
this map is a map of principal bundles and hence an isomorphism.
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(⇒) Suppose that P : H → G is an isomorphism, so there is a principal
bundle Q : G → H and isomorphisms

α : P ⊗G Q −→ U(H) , β : Q⊗H P −→ U(G) .

We again have the bundle P−1 as before, with a (principal) left G-action
and a right H-action. To show that the H-action on P−1 is also principal,
it is enough to show that there is an isomorphism

τ : P−1 −→ Q

which preserves the actions. To define τ , note first that there is a canon-
ical isomorphism (for any principal G-bundle P over H)

θ : P ×H0 (P ⊗G Q) −→ P ×G0 Q

given by θ(p, p′ ⊗ q) = (p, δ(p, p′)q), with inverse θ−1(p, q) = (p, p ⊗ q).
Now define τ : P → Q between manifolds as

τ(p) = pr2(θ(p, α−1(1π(p)))) .

This τ satisfies the identities

τ(pg) = g−1τ(p) , τ(hp) = τ(p)h−1 .

In exactly the same way, we can define a map σ : Q → P as

σ(q) = pr2(θ
′(q, β−1(1π(q)))) ,

where θ′ : Q ×G0 (Q ⊗H P ) → Q ×H0 P is the canonical isomorphism.
The map σ satisfies the identities

σ(qh) = h−1σ(q) , σ(gq) = σ(q)g−1 .

Then τ ◦σ : Q → Q and σ ◦ τ : P → P are maps of principal bundles,
hence diffeomorphisms. But then τ and σ are diffeomorphisms too, and
τ defines the required isomorphism P−1 → Q we were looking for.

2.6 The principal bundles category as a universal
solution

In this section we will prove that the category GPD of Lie groupoids
and principal bundles is the universal solution to inverting the weak
equivalences in the category Gpd of Lie groupoids and homomorphisms.
This provides a good justification for considering principal bundles as
morphisms between Lie groupoids. Indeed, in many cases it is natural
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to view two weakly equivalent Lie groupoids as representing the same
geometric object. For example, for a foliation F of M and two complete
transversals S and T , the étale groupoids HolS(M,F) and HolT (MF)
are weakly equivalent, and both represent the ‘leaf space’ of the foliation.

Consider for a homomorphism φ : H → G between Lie groupoids the
principal G-bundle

P(φ) = φ∗(U(G))

over H0. This bundle has in fact a natural structure of a principal G-
bundle over H. Indeed, P(φ) is the space of pairs (y, g) where y ∈ H0

and g ∈ G1 with φ(y) = t(g), and the actions of G and H are given by

h(y, g)g′ = (t(h), φ(h)gg′)

for any h ∈ H1 with s(h) = y and g′ ∈ G1 with s(g) = t(g′). This
construction has the following property [50, 51].

Proposition 2.10 The construction of the principal bundle P(φ) out
of a homomorphism φ of Lie groupoids defines a functor

P : Gpd −→ GPD .

Moreover, a homomorphism in Gpd is a weak equivalence if and only if
this functor sends it to an isomorphism in GPD.

Proof For the identity homomorphism id : G → G we have P(id) =
U(G), which is the identity on G in the category GPD. And for two
homomorphisms φ : H → G and ψ : K → H there is a canonical map

τ : P(ψ)⊗H P(φ) −→ P(φ ◦ψ) ,

which is given by

τ((z, h)⊗ (y, g)) = (z, φ(h)g)

for any (z, h) ∈ P(ψ) and (y, g) ∈ P(φ). The map τ is well-defined on the
tensor product and preserves the left K-action and the right G-action,
so it is an isomorphism. This proves that P is a functor.

Finally, it is clear from the definitions that a homomorphism φ is a
weak equivalence if and only if P(φ) is also H-principal, and by Proposi-
tion 2.9 this means precisely that P(φ) is an isomorphism in the category
GPD.

Theorem 2.11 Let F : Gpd → C be a functor into any category C
which sends weak equivalences into isomorphisms. Then F factors as
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F = F̃ ◦P

Gpd
P

��

F
����

��
��

��
� GPD

F̃

��

C

for a unique functor F̃ : GPD → C.

Proof We will present a proof based on general arguments, which can be
applied in other contexts as well. However, some constructions in this
proof lead us outside the scope of the Hausdorff conventions involved
in the definition of the categories Gpd and GPD. Therefore, let us tem-
porarily consider the larger category Gpd∗ of all smooth groupoids G

and homomorphisms, defined only by the conditions that G0 and G1

are manifolds (possibly non-Hausdorff) and s and t are submersions.
All the constructions in Section 2.5 apply without any changes to this
larger category, and in particular there is a corresponding category GPD∗

of such (non-Hausdorff) groupoids and generalized morphisms. Now let
Gpd′ be the full subcategory of Gpd∗ consisting of those groupoids which
are weakly equivalent to (Lie) groupoids in Gpd, and let GPD′ be the
analogous category of generalized morphisms. We will prove the theorem
for the categories Gpd′ and GPD′. The theorem, as stated above, then
follows formally, because the category GPD′ is obviously equivalent to
GPD, while the functor F extends to the category Gpd′ because it sends
weak equivalences to isomorphisms.

The main ingredient of the proof is the construction of the two-sided
semi-direct product H � P � G for any principal G-bundle P over H.
This semi-direct product is a groupoid over P , in which arrows are triples
(h, p, g), h ∈ H, p ∈ P and g ∈ G, such that s(h) = π(p) and ε(p) = s(g);
in other words,

(H � P � G)1 = H1 ×H0 P ×G0 G1 .

Furthermore, s(h, p, g) = p, t(h, p, g) = hpg−1 and the multiplication
is given by (h, p, g)(h′, p′, g′) = (hh′, p′, gg′). Note that the groupoid
H � P � G is in the category Gpd′ because G and H are (however,
if G and H are non-Hausdorff Lie groupoids, this groupoid may have
non-Hausdorff base).

The structure maps π : P → H0 and ε : P → G0 of the principal
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bundle induce homomorphisms, which we again denote

H
π←− H � P � G

ε−→ G .

The condition that the G-action is principal implies that π is a weak
equivalence. Thus, F maps it to an isomorphism, and we can define

F̃ (P ) = F (ε) ◦F (π)−1 .

First of all, note that this is well-defined on isomorphism classes of prin-
cipal bundles. Indeed, if f : P → P ′ is an isomorphism, it induces an
isomorphism of groupoids f : H � P � G → H � P ′ � G for which the
diagram

H � P � G

π

������������

f

��

ε

������������

H G

H � P ′ � G

π′

������������ ε′

		����������

commutes. In particular,

F (ε)F (π)−1 = F (ε)F (f)F (f−1)F (π)−1

= F (ε ◦ f)F (π ◦ f)−1

= F (ε′)F (π′)−1 .

Before proving that F̃ thus defined is a functor, we show that it
extends F , i.e. that F̃ ◦P = F . To this end, first observe that if φ, ψ :
H → G are two homomorphisms and T a transformation from φ to ψ,
then F (φ) = F (ψ). Indeed, let I be the groupoid with two objects 0 and
1 and one isomorphism between them, and consider for any groupoid H

the (weak) equivalences

H
i0 ��

i1
�� H × I

pr1 �� H .

Here i0 and i1 are the evident inclusions and pr1 is the projection, so
π ◦ i0 = π ◦ i1 = id. Since F (pr1) is an isomorphism, we have F (i0) =
F (i1). The transformation T defines a homomorphism T : H × I → G

with T ◦ i0 = φ and T ◦ i1 = ψ. Therefore F (φ) = F (ψ).
From this basic property of F it follows immediately that F̃ extends
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F . For if φ : H → G is a homomorphism, the diagram

H � P(φ) � G

π

��

ε �� G

H

φ



������������

commutes up to a transformation T : φ ◦π → ε. For a point p = (y, g) in
P(φ) we have π(p) = y and ε(p) = s(g), and T is given by

T (p) = g : φ(π(p)) −→ ε(p) .

To prove that F̃ is a functor and that it is unique, consider for P :
H → G once again the two-sided semi-direct product

H
π←− H � P � G

ε−→ G .

Since π is a weak equivalence, the bundle P(π) is invertible, with the in-
verse the opposite bundle P(π)−1. There is a canonical map of principal
bundles

P(π)−1 ⊗H�P�G P(ε) −→ P

which sends (p, h) ⊗ (x, g) into h−1pg. Since this map is necessarily an
isomorphism, we find that

P = P(ε) ◦P(π)−1

in the category GPD′, so any functor GPD′ → C which extends F has to
satisfy the defining identity for F̃ . This shows that F̃ is unique. Thus,
it only remains to be proved that F̃ is a functor. Clearly F̃ preserves
the identities. To see that F̃ preserves composition, consider morphisms
Q : K → H and P : H → G in GPD′, and the associated two-sided
semi-direct products

H
π←− H � P � G

ε−→ G ,

K
π′
←− K � Q � H

ε′−→ H

and

K
π′′
←− K � (Q⊗H P ) � G

ε′′−→ G .

Construct the weak pull-back S of ε′ and π, and observe that there is an
evident projection τ : S → K � (Q⊗H P )�G which makes the following
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diagram commutative:

K � (Q⊗H P ) � G
ε′′ ��

π′′

��

G

S

τ

������������������ pr2 ��

pr1

��

H � P � G

ε

��

π

��

K K � Q � H
π′



 ε′ �� H

We know that in this diagram, π, π′ and π′′ are weak equivalences. Also
pr1 is a weak equivalence by [48, Proposition 5.12 (iv)]. Thus τ is also a
weak equivalence, and F (τ) an isomorphism. It now follows by a diagram
chase that F̃ preserves the composition:

F̃ (Q⊗H P ) = F (ε′′) ◦F (π′′)−1

= F (ε′′ ◦ τ)F (π′′ ◦ τ)−1

= F (ε ◦pr2) ◦F (π′ ◦pr1)
−1

= F (ε) ◦F (pr2) ◦F (pr1)
−1 ◦F (π′)−1

= F (ε) ◦F (π)−1 ◦F (ε′) ◦F (π′)−1

= F̃ (P ) ◦ F̃ (Q) .

Finally, let us observe the following two immediate consequences of
the two-sided semi-direct product constructed in the proof [50, 51]:

Corollary 2.12 Two Lie groupoids are weakly equivalent if and only if
they are isomorphic in the category GPD.

Proof (⇒) This direction is clear from the fact that the functor P :
Gpd → GPD sends weak equivalences to isomorphisms.

(⇐) If P : H → G is invertible, then P is also H-principal, and in the
diagram of homomorphisms

H
π←− H � P � G

ε−→ G

not only π but also ε is a weak equivalence. Although H � P � G may
not be a Lie groupoid because its base P may be non-Hausdorff, it is
weakly equivalent to a Lie groupoid, so the Lie groupoids G and H are
weakly equivalent.

Corollary 2.13 For two Lie groupoids G and H, morphisms H → G in
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GPD correspond to equivalence classes of diagrams of homomorphisms

H
w←− K

φ−→ G

with w a weak equivalence. Two such diagrams H
w←− K

φ−→ G and

H
w′
←− K ′ φ′

−→ G are equivalent (i.e. represent the same morphism in
GPD) if and only if there is a diagram

K
w

��		
		

		
		 φ

��















H L

��

��

G

K ′
w′

��







 φ′

����������

which commutes up to transformations and in which L → K and L → K ′

are weak equivalences.



3

Sheaves on Lie groupoids

In Chapter 2 we have introduced the notion of a Lie groupoid, and we
have shown how singular spaces (such as the space of leaves of a foliation)
can be represented by weak equivalence classes of Lie groupoids.

The purpose of the present chapter is two-fold. First, we will intro-
duce the category of equivariant sheaves for a Lie groupoid G, as well
as its derived category. As will become apparent, these categories are
particularly relevant for étale groupoids, and more generally for folia-
tion groupoids. Secondly, we will give an explicit construction of the
fundamental groupoid π1(G) associated to a Lie groupoid G. These con-
structions are related in a Grothendieck style way, by the fact that the
fundamental groupoid is determined by the locally constant sheaves.

We begin in Section 3.1 with an explicit description of equivariant
sheaves for a groupoid, and give some examples. In Section 3.2 we study
how the category of G-sheaves behaves with respect to homomorphisms
of Lie groupoids. We show that the category of G-sheaves is in fact
functorial with respect to the generalized morphisms, and that a weak
(or Morita) equivalence between Lie groupoids induces an equivalence
of the associated categories of sheaves.

In Section 3.3 we discuss the fundamental group of a Lie groupoid.
More precisely, we construct for each Lie groupoid G a new Lie groupoid
π1(G). This groupoid is weakly equivalent to a discrete groupoid. In
particular, the isotropy groups of π1(G) are discrete. If G is connected,
these isotropy groups of π1(G) are all isomorphic to each other, and will
be referred to as ‘the’ fundamental group of G. In the special case where
G is étale, we recover the fundamental group of G as defined earlier by
[6, 50]. The construction is also closely related to the construction of
loop spaces for orbifolds in [36].

We will prove that the fundamental groupoid π1(G) has a universal

175



176 3 Sheaves on Lie groupoids

property. In fact, there is a canonical map G → π1(G) which is universal
among maps G → H into discrete groupoids, cf. Corollary 3.23 below.
We will also prove that the construction of the fundamental groupoid is
functorial for generalized homomorphisms. This will in particular imply
that fundamental groups are invariant under weak equivalence.

To conclude this section, we use our construction of the fundamental
group to give an explicit description of the kernel of the natural surjec-
tion

π1(M) −→ π1(M,F)

of the fundamental groupoid of a manifold M to the fundamental group-
oid of the holonomy groupoid of a foliation F of M . From this descrip-
tion, we will be able to deduce a sharpening of Haefliger’s original the-
orem on the existence of analytic codimension 1 foliations of compact
manifolds [22] (see also [18, 33]).

In Section 3.4 we return to the general context of equivariant sheaves,
and consider sheaves of R-modules over Lie groupoids. We show that
these sheaves form an abelian category which has enough injectives, sat-
isfies Grothendieck’s axiom AB5, and has a small set of generators. These
properties allow us to apply the standard machinery of homological al-
gebra to this category. In particular, it allows us to construct the derived
category, as we will show in Section 3.5. These general constructions and
facts will later be used in Chapter 4, in our discussion of cohomology.

3.1 Sheaves on groupoids

From now on, we assume that the reader has some familiarity with the
basic notions of the theory of sheaves on topological spaces. We will
briefly recall some of the definitions, often only to fix the terminology and
the notation. There are many good treatments of sheaf theory available,
including [4, 5, 32].

We will continue to work in the context of smooth manifolds and
smooth maps, although much of this section applies more generally.

One way of defining a sheaf (of sets) on a manifold M is as a local
diffeomorphism π : E → M ; here we do not require E to be Hausdorff.
We will often refer to π as an étale map, and to E as an étale space
over M . Also, we will often just write E for (π : E → M). The category
of sheaves of sets over M is the category of such étale spaces, where



3.1 Sheaves on groupoids 177

the arrows from π : E → M to π′ : E′ → M are the continuous maps
f : E → E′ with π′ ◦ f = π; such f are necessarily étale.

A seemingly different but equivalent way of defining the notion of
a sheaf is via local sections. One then defines a sheaf S of sets on M

to consists of sets S(U), one for each open subset U of M , together
with ‘restriction maps’ ρV,U : S(U) → S(V ) for V ⊂ U . The restriction
maps are required to be functorial, in the sense that ρU,U = id and
ρW,V ◦ ρV,U = ρW,U if W ⊂ V ⊂ U . Moreover, the following gluing
condition should be satisfied for a union U =

⋃
i∈I Ui of open sets: for

any family σi ∈ S(Ui), i ∈ I, compatible on overlaps in the sense that
ρUi∩Uj ,Ui

(σi) = ρUi∩Uj ,Uj
(σi) for all i, j ∈ I, there is a unique σ ∈ S(U)

with ρUi ,U (σ) = σi for all i ∈ I. For two such sheaves S and S ′, the
maps φ : S → S ′ are the natural transformations, given by functions
φU : S(U) → S ′(U) commuting with the restrictions of S and S ′.

The equivalence between these two definitions is explained as follows:
Given a local diffeomorphism π : E → M , one defines a sheaf Sπ by

Sπ(U) = Γ(U,E) = {σ : U → E |π ◦σ = id} ,

the set of smooth sections of π. Conversely, given a sheaf S as above,
one first defines the stalk Sx of S at x ∈ M as the colimit

Sx = lim
→ x∈U

S(U) .

Thus, elements of Sx are equivalence classes of pairs (σ,U), where U is
an open neighbourhood of x and σ ∈ S(U), and (σ,U) is equivalent to
(σ′, U ′) if and only if there is a neighbourhood W ⊂ U ∩ U ′ of x such
that ρW,U (σ) = ρW,U ′(σ′). The equivalence class of (σ,U) is denoted by
σx and called the germ of σ at x. The union of the stalks Sx, x ∈ M ,
carries a natural topology, called the sheaf topology. The basic open sets
for this topology are the sets of the form

Bσ = {σx |x ∈ U} ,

where U is an open subset of M and σ ∈ S(U). In this way the union of
the stalks form a topological space, denoted

Et(S)

and referred to as the étale space of the sheaf S. The evident projection

π : Et(S) −→ M

restricts to a homeomorphism on each basic open Bσ, i.e. π is a local



178 3 Sheaves on Lie groupoids

homeomorphism. In particular, we can pull back the manifold structure
on Et(S), making π into a local diffeomorphism.

These constructions establish in fact an equivalence of categories, be-
tween sheaves S of sets on M and étale spaces E over M . More precisely,
the constructions of the étale space Et(S) from S, and of the sheaf Sπ

from π : E → M , are both functorial, and inverse to each other up to
natural isomorphisms.

We will denote either of these equivalent categories by

Sh(M) ,

and often change point of view, by tacitly moving from a sheaf S to the
associated étale space and vice versa. We will also usually work with
sheaves with more structure, such as sheaves of abelian groups or vector
spaces.

Now let G be a Lie groupoid. We define a (right) G-sheaf to be a
sheaf (étale space) π : E → G0 equipped with a smooth right G-action
along π

E ×G0 G1 −→ E , (e, g) �−→ eg .

The category of such sheaves is denoted by

Sh(G) ,

an arrow E → E′ being a (smooth) map f : E → E′ which respects
the projection to G0 as well as the action (i.e. π′(f(e)) = π(e) and
f(eg) = f(e)g, for any e ∈ E and g ∈ G1 with t(g) = π(e)). We denote
the set of such arrows by Hom(E,E′), or sometimes by HomG(E,E′)
for emphasis.

Remark. Our convention to work with right G-sheaves is somewhat
arbitrary, and we could as well have chosen to work with left G-sheaves.
In fact, if E is a right G-sheaf, we will sometimes have occasion to use
the associated left G-sheaf Eop, defined by the same étale space E → G0

and with the left action ge defined as eg−1.

Example 3.1 Recall that for any set A the corresponding constant G-
sheaf on G0 is the étale space pr2 : A×G0 → G0, where A is given the
discrete topology. It has the natural structure of a G-sheaf, where we
take the trivial action

(a, y)g = (a, x)

for any g : x → y in G.
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If G is a connected Lie group (G0 just a point), every G-sheaf is con-
stant, and Sh(G) is just the category of sets. In particular, this category
contains no information about G. On the other hand, if G is a Lie group-
oid weakly equivalent to an étale groupoid, there are many G-sheaves,
as we will see, and in fact from the category Sh(G) one can essentially
recover the groupoid G, at least up to weak equivalence.

Example 3.2 Let G be an étale groupoid. Consider the sheaf A0 of
smooth functions on G0, i.e.

A0(U) = C∞(U, R) ,

for any open U ⊂ G0. The stalk A0
x at a point x ∈ G0 is the vector space

of germs of smooth functions. This sheaf has the natural structure of a
G-sheaf. Indeed, if fy ∈ A0

y and g : x → y is an arrow in G, we can define
a germ fyg at x as the composition of germs

fyg = fy ◦Eff(g) .

More explicitly, we first choose a small neighbourhood V of y such that
fy is the germ of a smooth function f : V → R at y, and next we choose
a small neighbourhood U of x such that the source map s : G1 → G0

has a section σ : U → G1 through g. Choosing U small enough so that
t : G1 → G0 maps σ(U) into V , we then define fyg as the germ at x of
f ◦ t ◦σ : U → R.

This example generalizes in fact to the general principle that for any
étale groupoid G, any sheaf on G0 constructed from the intrinsic smooth
structure of G0 has the structure of a G-sheaf. For example, the sheaf An

of differential n-forms on G0 is a G-sheaf, with action defined exactly as
for A0: In the notation above, if ωy ∈ An

y is the germ at y of a differential
n-form ω on an open V and g : x → y then

ωyg = Eff(g)∗(ωy) = (t ◦σ)∗(ω)x ,

where t ◦σ : U → V as above.

Example 3.3 Let (M,F) be a foliated manifold, and let Hol(M,F) be
its holonomy groupoid. Let An

bas be the sheaf on M of germs of basic
n-forms. Recall that an n-form ω on an open U ⊂ M is called basic if
iX(ω) = LX(ω) = 0 for any vector field X on U which is tangent to
the leaves of F . If φ : U → Rp × Rq is a foliation chart for F , the basic
n-forms on U are exactly the forms obtained as pull-backs of n-forms
along pr2 ◦φ : U → Rq. From this description, it is easy to see that An

bas



180 3 Sheaves on Lie groupoids

carries a canonical action by the holonomy groupoid. Thus An
bas is a

Hol(M,F)-sheaf.

Remark. Let G be a Lie groupoid. Let ε : E → G0 be a manifold
equipped with a right G-action, where ε is any smooth map. Then the
sheaf of smooth sections of ε carries a natural action of the étale groupoid
Bis(G) of germs of bisections of G [48, p. 115]. If G is itself étale, then
Bis(G) = G, and in fact all the G-sheaves in Example 3.2 can be obtained
from a G-vector bundle E in this way.

Remark. Let f : N → M be a submersion. Then f can be factored
uniquely (up to diffeomorphism) as f = f (0) ◦ c,

N
c−→ N (0) f(0)

−→ M ,

where N (0) is a (possibly non-Hausdorff) manifold, c is a submersion
with connected fibers, and f (0) is an étale map. (Thus the fibers of
f (0) are the connected components of the fibers of f , and we refer to
N (0) as the sheaf of connected components of f .) Also, observe that this
construction is stable under pull-back, in the sense that for any smooth
map M ′ → M the canonical map (M ′ ×M N)(0) → M ′ ×M N (0) is a
diffeomorphism.

Example 3.4 Let G be a Lie groupoid, and let ε : E → G0 be a manifold
with a right G-action. Assume that ε is a submersion. Then the sheaf
E(0) → G0 constructed in the previous remark has the structure of a
G-sheaf. If [e] ∈ E(0) denotes the component of ε−1(y) which contain
the point e ∈ ε−1(y), then the action is simply described by

[e]g = [eg]

for any arrow g : x → y in G. In fact, this construction provides a
left adjoint to the inclusion of the étale G-spaces (G-sheaves) into the
category of G-spaces ε : E → G0 for which ε is a submersion. Explicitly,
if E → F is any G-equivariant map from such an ε into an étale G-
space, then it factors uniquely through E → E(0) by a map of G-sheaves
E(0) → F .

Example 3.5 Let G be a Lie groupoid. As a special case of the previous
example, consider for each open U ⊂ G0 the submersion

s : t−1(U) −→ G0
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with the evident right G-action given by multiplication in G. Write

Ũ = (s(0) : t−1(U)(0) → G0)

for the associated G-sheaf of connected components. If E → G0 is any
other G-sheaf, then there is an obvious bijection

φ : Γ(U,E) −→ HomG(t−1(U), E) ,

defined by φ(σ)(g) = σ(t(g))g. By the adjointness property of Example
3.4, we obtain an isomorphism

Γ(U,E) −→ HomG(Ũ , E) .

Thus the G-sheaf Ũ ‘classifies’ or ‘represents’ the sections over U . It
follows that for every G-sheaf E there exists a surjection of the form∐

Ũi −→ E

from a sum of copies of such G-sheaves Ũi.

Example 3.6 The category Sh(G) has ‘internal homs’, and these are
constructed as internal homs of ordinary sheaves on the space G0. To be
more explicit, recall first that if E and F are sheaves on the space G0,
then the sheaf Hom(E,F ) is defined, by setting for each open U ⊂ G0,

Hom(E,F )(U) = Hom(E|U , FU ) ,

the set of sheaf maps E|U → F |U between the restricted sheaves over the
subspace U . Now if E and F have the structure of G-sheaves, this sheaf
Hom(E,F ) can also be equipped with a G-action, as follows. Suppose g :
x → y is an arrow in G. Let g̃ : U → G1 be a bisection through g, defined
on a neighbourhood U of x, so that t ◦ g̃ : U → V is a diffeomorphism
onto a neighbourhood V of y. Now if α : E|V → F |V represents an
element of Hom(E,F )y, we define αg ∈ Hom(E,F )x to be represented
by the map αg : E|U → F |U , given for any z ∈ U and e ∈ Ez by

(αg)(e) = α(eg̃(z)−1)g̃(z) .

The bisection g̃ is not unique; but since s : G1 → G0 is a submersion, it
holds that for any other such section g̃′ through g there is a neighbour-
hood U0 ⊂ U of x such that for any z ∈ U0, g̃(z) and g̃′(z) lie in the
same connected component of the fiber s−1(z) of s : G1 → G0. Now con-
sider for each a ∈ Fz the open subset Wa = {h ∈ s−1(z) |α(eh−1)h = a}
of s−1(z). These sets form a partition of s−1(z), i.e. Wa ∩ Wb = ∅ or
Wa = Wb for any two a, b ∈ Fz. Thus g̃(z) and g̃′(z) lie in the same Wa,
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i.e. α(eg̃(z)−1)g̃(z) = α(eg̃′(z)−1)g̃′(z). Since this holds for any z ∈ U0,
the definition of αg is independent of the choice of the admissible section
g̃.

The G-sheaf Hom(E,F ) thus defined has the familiar adjointness
property, given by the natural bijection

HomG(D,Hom(E,F )) ∼= HomG(D × E,F )

for any G-sheaf D (here HomG denotes the set of arrows in the category
Sh(G), and D × E is the product of G-sheaves).

3.2 Functoriality and Morita equivalence

In this section we will discuss how the category Sh(G) of sheaves (of
sets) on a Lie groupoid G behaves under morphisms between Lie group-
oids. Later, we will consider the induced operations at the level of chain
complexes of sheaves of modules.

Let φ : H → G be a homomorphism between Lie groupoids. If E → G0

is a right G-space (i.e. a manifold with a right G-action), then clearly
the pull-back φ∗(E) = H0 ×G0 E is a right H-space under the induced
action

(y, e)h = (z, eφ(h))

for h : z → y in H and e ∈ Eφ(y). Since the pull-back of an étale map is
again étale, we obtain in this way a functor

φ∗ : Sh(G) −→ Sh(H) .

Proposition 3.7 Let φ : H → G be a homomorphism between Lie
groupoids. Then there exists a functor

φ∗ : Sh(H) −→ Sh(G)

which is right adjoint to φ∗.

Remark. The adjointness means that for any G-sheaf S and any H-
sheaf T there is a natural isomorphism

HomH(φ∗S, T ) ∼= HomG(S, φ∗T ) , (1)

and this property determines φ∗ uniquely up to natural isomorphism.
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Proof Let T be any H-sheaf. If we assume for a moment that φ∗ exists,
then the adjointness property and the representability of local sections
by sheaves of the form Ũ (Example 3.5) yield an explicit description of
φ∗T . Indeed, for any open set U ⊂ G0 we must have

Γ(U, φ∗T ) = HomG(Ũ , φ∗T ) = HomH(φ∗Ũ , T ) .

Thus, we take this expression as the definition of φ∗T . Note that since
the factorization t−1(U) → t−1(U)(0) → G0 defining Ũ is preserved by
pull-back along φ : H0 → G0, we can also write

φ∗T (U) = HomH(φ∗t−1(U), T ) ,

where the latter HomH is that of manifolds with H-action. It is clear
that φ∗T thus defined is a sheaf on G0. We have to show that it carries
a G-action, and that it is indeed adjoint.

To see that G acts on φ∗T , consider an arrow g : x → y in G. Let
g̃ : U → G1 be a bisection through g, defined on a neighbourhood U of x.
Then t ◦ g̃ defines a diffeomorphism U → V onto an open neighbourhood
V of y. This section g̃ induces a map of G-spaces

g̃∗ : t−1(U) −→ t−1(V ) , k �−→ g̃(t(k))k

and hence a map

g̃∗ : Ũ −→ Ṽ

between the sheaves of fiber-wise components. We claim that, for U small
enough, the latter map does not depend on the choice of the bisection g̃

through g. Indeed, if g̃′ is another one, then g̃′(x) = g = g̃(x), so for x′

close to x the arrows g̃(x′) and g̃′(x′) will also lie in the same component
if the fiber of s : t−1(V ) → G0 over x′. Hence if k : y′ → x′ then g̃∗(k)
and g̃′∗(k) will lie in the same component of the fiber of t−1(V ) → G0

over y′.
Now if ay ∈ (φ∗T )y is the germ of a map a : φ∗(Ṽ ) → T defined for

a neighbourhood V of y, define the action of g : x → y on ay by

ayg = (a ◦φ∗(g̃∗))x .

This is well-defined because for a neighbourhood U of x which is small
enough the map g̃∗ : Ũ → Ṽ does not depend on the choice of g̃ as we
have seen.

Finally, for the adjointness property, consider an H-sheaf T as above
and a G-sheaf S. Then the desired bijection (1) between G-maps λ : S →
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φ∗T and H-maps µ : φ∗S → T can explicitly be described as follows:
Given µ, define λU : S(U) → φ∗T (U) as the composition

HomG(Ũ ,S)
φ∗

�� HomH(φ∗Ũ , φ∗S)

µ ◦ -
��

S(U)

∼=

��

λU �� HomH(φ∗Ũ , T ) = φ∗T (U)

Conversely, given λ, define µ stalk-wise for points y ∈ H0 as the com-
posite

µy : (φ∗S)y = Sφ(y)

λφ(y )−→ (φ∗T )φ(y)
ev−→ Ty ,

where the evaluation map ev : (φ∗T )φ(y) → Ty sends the germ at φ(y) of
a map a : φ∗Ũ → T defined on the neighbourhood U of φ(y) to its value
at the component of 1φ(y) ∈ t−1(U)φ(y) = φ∗(t−1(U))y.

We leave it to the reader to check that these constructions of λ from µ

and vice versa are mutually inverse, and establish the required bijection
(1).

Examples 3.8 (1) Let f : N → M be a smooth map between manifolds.
Then the functor f∗ : Sh(N) → Sh(M) is given by the composition with
f−1, i.e.

f∗(S)(U) = S(f−1(U)) .

(2) Let G be a Lie groupoid and φ : G → {pt} the canonical map into
one-point space. Then φ∗ : Sh(G) → Sets is given by

φ∗(E) = Γinv(G,E) .

Here Γinv(G,E) denotes the set of G-invariant sections of E, i.e. of global
sections σ of E which are invariant in the sense that σ(y)g = σ(x) for
any g : x → y.

(3) Let G be a Lie groupoid, and denote by q : G → |G| the quotient
projection. This projection again induces a functor q∗ : Sh(G) → Sh(|G|),
although here |G| in not necessarily a manifold and the sheaves Sh(|G|)
should be understood in topological sense, without the smooth structure.
In this case we have

q∗(E)(U) = Γinv(G|q−1(U), E) .

Next, suppose P : H → G is a generalized morphism between Lie
groupoids. Thus P is a right principal G-bundle over H0 equipped with
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a left H-action, and we write

P

π

��

ε �� G0

H0

for the structure maps, as in Section 2.5. The bundle P induces a functor
P⊗G - from manifolds equipped with a left G-action to manifolds with a
left H-action. Explicitly, if M → G0 is such a G-manifold, then P⊗GM is
obtained from the pull-back P ×G0 M by identifying (pg,m) and (p, gm)
for any g : x → y in G, p ∈ Py and m ∈ Mx. This quotient space is a
manifold, because the action of G on P ×G0 M is principal (Lemma 2.8).

Proposition 3.9 The functor P ⊗G - maps left G-sheaves to left H-
sheaves.

Proof Suppose that f : E → G0 is an étale space over G0, equipped with
a left G-action. We have to show that the projection

ρ : P ⊗G E −→ H0 , p⊗ e �→ π(p)

is again étale. To this end, consider the diagram

P ×G0 E

q

��

pr2 �� P

π

��

P ⊗G E = (P ×G0 E)/G
ρ

�� P/G = H0

where q is the quotient map. Now P → H0 is a principal G-bundle, and
hence (Lemma 2.8) P ×G0 E is a principal G-bundle over P ⊗G E. Since
every map of principal G-bundles over the same base is an isomorphism,
the square above is necessarily a pull-back. Now pr2 is the pull-back
of the étale map E → G0, hence is itself étale. Since π is a surjective
submersion, ρ must also be étale (see e.g. [48, Exercise 5.16]).

Thus, using the equivalence E → Eop between left and right G-
sheaves, we obtain a functor of right sheaves

P ∗ : Sh(G) −→ Sh(H)

defined on étale spaces by

P ∗(E) = (P ⊗G Eop)op .
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From the unit and associativity properties of the tensor product, we
immediately obtain that this construction is functorial in P .

Proposition 3.10 Let E be a G-sheaf.
(i) For the unit bundle U(G) : G → G, there is a canonical isomor-

phism

U(G)∗(E) −→ E

natural in E.
(ii) For generalized morphisms Q : K → H and P : H → G, there is

a canonical isomorphism

Q∗(P ∗(E)) −→ (Q⊗H P )∗(E)

natural in E.

Corollary 3.11 (Morita invariance) Let P : H → G be a Morita
equivalence. Then P ∗ : Sh(G) → Sh(H) is an equivalence of categories.

Next, we observe that this construction of the functor P ∗ for gener-
alized morphisms extends that of the pull-back functor φ∗ for ordinary
homomorphisms:

Proposition 3.12 Let φ : H → G be a homomorphism between Lie
groupoids, and let P(φ) : H → G be the associated principal G-bundle
over H. For any G-sheaf E there exists a canonical isomorphism

φ∗E −→ (P(φ)⊗G Eop)op = P(φ)∗(E)

natural in E.

Proof Recall that the points of P(φ) are pairs (y, g) where y ∈ H0 and
g : x → φ(y) in G. The isomorphism sends e ∈ (φ∗E)y to (y, 1φ(y)) ⊗ e,
and its inverse sends (y, g)⊗ e to eg−1.

Corollary 3.13 Let G and H be Lie groupoids.
(i) If φ : H → G is a weak equivalence, then φ∗ : Sh(G) → Sh(H) is

an equivalence of categories.
(ii) Let P : H → G be a generalized morphism, with associated two-

sided semi-direct product

H
π←− H � P � G

ε−→ G

as in Section 2.6. Then there is a natural isomorphism

P ∗ ∼= π∗ ◦ ε∗
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of functors Sh(G) → Sh(H).
(iii) For any generalized morphism P : H → G, the functor P ∗ :

Sh(G) → Sh(H) has a right adjoint

P∗ = ε∗ ◦π∗ : Sh(H) −→ Sh(G) .

Proof Part (i) follows from Proposition 3.10 and Proposition 3.12. For
part (ii), we have P = P(ε) ◦P(π)−1 as generalized morphisms (Section
2.6), hence P ◦P(π) = P(ε) and π∗ ◦P ∗ ∼= ε∗ by Proposition 3.10. But
π is a weak equivalence, so π∗ is an equivalence of categories. Then
so is its adjoint π∗, and the unit of the adjunction id → π∗ ◦π∗ is an
isomorphism. Thus from π∗ ◦P ∗ ∼= ε∗ we obtain a natural isomorphism

P ∗ ∼= π∗ ◦π∗ ◦P ∗ ∼= π∗ ◦ ε∗ .

Part (iii) now follows from (ii), because π∗ is an equivalence of categories
with inverse π∗ and ε∗ has a right adjoint ε∗.

3.3 The fundamental group and locally constant
sheaves

Let G be a Lie groupoid. We say that G is connected if its space of orbits
|G| is (path-)connected. This motivates us to define a G-path (or path in
G) as a sequence

σngnσn−1 . . . σ1g1σ0 ,

where σ0, . . . , σn : [0, 1] → G0 are paths in G0 and g1, . . . , gn are ar-
rows in G such that gi : σi−1(1) → σi(0), i = 1, . . . , n. We say that
σngn . . . g1σ0 is a path from σ0(0) to σn(1), and that it has order n ≥ 0.

•
σ0 �� •

g1

��
•

σ1 �� • . . . •
σn−1

�� •

gn

��
•

σn �� •

With this definition, we can say that G is connected if and only if for any
two points x, y ∈ G0 there exists a G-path from x to y. If σ′

mg′m . . . g′1σ
′
0

is another G-path with σ′
0(0) = σn(1), we can concatenate these two into

a new G-path

σ′
mg′m . . . g′1σ

′
01σn (1)σngn . . . g1σ0 .

For any Lie groupoid G, a connected component of G is a maximal
(non-empty) connected subgroupoid of G. Any connected component of
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G is an open full subgroupoid of G, and G decomposes into a disjoint
union of its connected components,

G =
∑

i

Hi .

A connected component Hi of G is just the restriction of G to the inverse
image of a connected component of |G| along the quotient projection
G0 → |G|.

Let G be a Lie groupoid. We shall denote by PG the set of all G-paths.
We shall now define when two G-paths are G-homotopic (with fixed end-
points). This will later enable us to define the fundamental group of G.
First, we define an equivalence relation on PG, called simply equivalence
of paths, to be generated by the following:

(i) (multiplication equivalence) the G-paths

σngn . . . σi+1gi+1σigiσi−1 . . . g1σ0

and

σngn . . . σi+1(gi+1gi)σi−1 . . . g1σ0

are equivalent if σi is a constant path (0 < i < n), and
(ii) (concatenation equivalence) the G-paths

σngn . . . gi+1σigiσi−1gi−1 . . . g1σ0

and

σngn . . . gi+1(σiσi−1)gi−1 . . . g1σ0

are equivalent if gi = 1σi−1(1) (1 ≤ i ≤ n). (Here σiσi−1 is the usual
reparametrized concatenation of the paths σi−1 and σi.)

A deformation between G-paths σngn . . . g1σ0 and σ′
ng′n . . . g′1σ

′
0 of the

same order from x to y consists of homotopies

Di : [0, 1]2 −→ G0 , i = 0, 1, . . . , n ,

from Di(0, - ) = σi to Di(1, - ) = σ′
i, and paths

di : [0, 1] −→ G1 , i = 1, . . . , n ,

from gi to g′i, which satisfy

(a) s ◦ di = Di−1( - , 1) and t ◦ di = Di( - , 0) for all i = 1, 2, . . . , n,
and

(b) D0([0, 1], 0) = {x} and Dn([0, 1], 1) = {y}.
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We may see such a deformation as a continuous family of G-paths of
order n,

Dn(t, - )dn(t) . . . dn(t)D0(t, - ) ,

from x to y, t ∈ [0, 1].
Two G-paths in PG are G-homotopic (with fixed end-points) if

one can pass from one to another by a sequence of deformations and
equivalences. With the multiplication induced by concatenation, the G-
homotopy classes of G-paths form a groupoid over G0, which we call the
fundamental groupoid of the Lie groupoid G, and denote by

π1(G) .

The fundamental group of G with respect to a base-point x0 ∈ G0 is the
isotropy group

π1(G, x0) = π1(G)x0 .

It consists of G-homotopy classes of (G, x0)-loops (or loops in the pointed
groupoid (G, x0)), which are by definition the G-homotopy classes of G-
paths from x0 to x0. Note that this definition generalizes the definition
of the fundamental group of an étale groupoid given in [6].

We now define a smooth structure on (π1(G))1 in the same way as one
defines the smooth structure on the fundamental groupoid of a manifold:
for any G-path σ = σngn . . . g1σ0 from x to y, take a simply connected
chart U around x and a simply-connected chart V around y in G0. Now
a basic open neighbourhood B(U, V, σ) of the G-homotopy class [σ] of σ

in (π1(G))1 consists of the G-homotopy classes of G-paths from x′ ∈ U

to y′ ∈ V of the form

τσγ ,

where γ is any path in U from x′ to x and τ is any path in V from y

to y′. It is easy to see that such subsets of (π1(G))1 form a basis for
a topology. Furthermore, each B(U, V, σ) is naturally homeomorphic to
U × V by the map (s, t), and this gives a smooth structure on (π1(G))1.
It is then clear that π1(G) becomes a Lie groupoid with the property
that (s, t) : G1 → G0 × G0 is a local diffeomorphism. In particular, the
fundamental group of G at any point x0 is discrete.

If we decompose G into the sum of its connected components G =∑
i Hi, then

π1(G) =
∑

i

π1(Hi) .
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Each Lie groupoid π1(Hi) is transitive. In particular, if G is connected,
the fundamental group of G does not depend (up to an isomorphism)
on the choice of the base-point.

Let φ : G → H be a homomorphism of Lie groupoids. Then φ induces
a function

Pφ : PG −→ PH

by

Pφ(σngn . . . g1σ0) = (φ ◦σn)φ(gn) . . . φ(g1)(φ ◦σ0) .

This function maps G-homotopic G-paths to H-homotopic H-paths, and
therefore it induces a map

π1(φ) = φ∗ : π1(G) −→ π1(H) ,

which is clearly a homomorphism of Lie groupoids. In particular, for
any x0 ∈ G0 the homomorphism of Lie groupoids φ : G → H induces a
homomorphism of fundamental groups

φ∗ : π1(G, x0) −→ π1(H,φ(x0)) .

Proposition 3.14 Let G be a Lie groupoid.
(i) The natural map G → π1(G) over G0 is a homomorphism of Lie

groupoids.
(ii) The fundamental groupoid π1(G) is weakly equivalent to a discrete

groupoid.
(iii) If G is connected, the inclusion π1(G, x0) → π1(G) is a weak

equivalence for any x0 ∈ G0, and the map (s, t) : π1(G) → G0 ×G0 is a
covering projection.

Proof (i) The natural map G → π1(G) sends an arrow g : x → y to the
class of the G-path ygx, where x and y denote the constant paths. This
map clearly preserves the groupoid structure, and it remains to check
that it is smooth. To this end, take any arrow g : x → y in G, and choose
a connected open neighbourhood W of g in G such that U = s(W ) is
a simply-connected chart around x. We may also assume that t(W ) lies
inside a simply-connected chart V around y. An arrow g′ : x′ → y′ in W

is mapped into the G-homotopy class of the G-path

g′ = y′g′x′ .

Since W is connected, we may choose a path γ in W from g to g′. It
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follows that g′ is G-homotopic to the G-path

(t ◦ γ)g(s ◦ γ)−1 .

Therefore the functor G → π1(G) maps W into B(U, V, g), and the
composition of this functor with the diffeomorphism B(U, V, σ) → U×V

is exactly the map (s, t), which is smooth.
(iii) It is clear from the construction of the smooth structure on π1(G)

that (s, t) is a covering projection if G is connected, therefore the inclu-
sion π1(G, x0) → π1(G) is a weak equivalence by [48, Proposition 5.15].

(ii) We apply result (iii) to any component of G.

Let G be a connected Lie groupoid. A covering space over G is a
covering space π : E → G0 over G0 equipped with a right G-action
E ×G0 G1 → E along π. Thus in particular, any covering space over G

is a sheaf over G. A covering space over G is also referred to as a locally
constant G-sheaf. Morphisms between two covering spaces E and F over
G are equivariant maps f : E → F ; any such morphism is necessarily a
covering projection. The category of covering spaces over G, which is a
full subcategory of the category Sh(G) of sheaves over G, will be denoted
by

Cs(G) .

Assume now that G is a connected Lie groupoid and that π : E → G0

is a covering space over G. The map π extends to a homomorphism of
Lie groupoids

π : E � G −→ G

by π(e, g) = g. The G-paths have the following ‘unique path lifting
property’, which generalizes the familiar property of covering spaces over
manifolds: Let e0 be a base-point in E, denote x0 = π(e0), and suppose
that σngn . . . g1σ0 is a G-path from x0 to x. Then there are unique paths
σ̃0, . . . , σ̃n in E with π ◦ σ̃i = σi, σ̃0(0) = e0 and σ̃i(0)gi = σ̃i−1(1). In
other words, if we write σ̃i(0) = ei and (ei, gi) : eigi → ei for the arrows
in E � G, then

σ̃n(en, gn) . . . (e1, g1)σ̃0

is the unique (E �G)-path starting at e0 which projects to σngn . . . g1σ0

along Pπ. Since G-homotopic paths are in this way lifted to (E � G)-
homotopic paths, it follows that any covering space over G with a base-
point e0 as above has a natural fiber-wise action of π1(G, x0).
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Examples 3.15 (1) Let M be a connected manifold. If we consider M

as the unit groupoid, then any path in M is equivalent to a path in
the manifold M in the usual sense. Furthermore, π1(M) is the usual
fundamental groupoid of M .

(2) Let G be a discrete group. If we consider G as a groupoid over
a one-point space, the fundamental groupoid π1(G) is just the group G

itself. In fact, the natural homomorphism G → π1(G) is an isomorphism
of groupoids for any discrete groupoid G.

(3) Let G be a connected Lie groupoid. Then the target-fiber
π1(G)( - , x0) over a base-point x0 ∈ G0 is a covering space over G0

by the source map,

s : π1(G)( - , x0) −→ G0 .

In fact, this map is a left principal π1(G, x0)-bundle. Furthermore, there
is a natural right action of G on π1(G)( - , x0) along this map, given by the
composition of the homomorphism G → π1(G) and the multiplication
in π1(G), which makes it into a covering space over G. (In fact, this is
the universal covering space over G.)

As an example, we shall now compute the fundamental group of the
action groupoid M � G associated to an action of a discrete group G on
M .

Proposition 3.16 Let M be a connected manifold with a smooth right
action of a discrete group G, and let x0 ∈ M . Then there is an isomor-
phism of groups

π1(M � G, x0) ∼= {(g, ς) | g ∈ G, ς ∈ π1(M)(x0, x0g)} ,

where the latter is a group with the multiplication given by

(g′, [σ′])(g, [σ]) = (g′g, [Rg ◦σ′][σ]) .

In particular, there is a short exact sequence of groups

1 −→ π1(M,x0) −→ π1(M � G, x0) −→ G −→ 1 .

Remark. Here we denoted by Rg : M → M the right translation x �→
xg.

Proof Denote P = {(g, ς) | g ∈ G, ς ∈ π1(M)(x0, x0g)}. It is easy to
check that P is indeed a group for the multiplication described in the
proposition. Denote by Px0 the set of loops in (M � G, x0), and let
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f : Px0 → P be the function which maps σn(xn, gn) . . . σ1(x1, g1)σ0 into

(gn . . . g2g1, [Rgn ...g2g1 ◦σn] . . . [Rg1 ◦σ1][σ0]) .

It is easy to see that f identifies (M �G)-homotopic loops, hence induces
a function

π1(M � G, x0) −→ P

which is clearly a surjective homomorphism. This homomorphism is in
fact an isomorphism. To see this, it is enough to observe that there is
an obvious deformation between the (M � G)-paths

σi(xi, gi)σi−1

and

σi(1)(σi(1), gi)((Rgi ◦σi)σi−1) .

By induction, this implies that any (M � G, x0)-loop is (M � G)-
homotopic to a loop of the form x0(x0, g1)σ0 in (M � G, x0), which
maps to the unit of P only if g1 = 1 and σ0 is homotopic to the constant
loop in M .

Example 3.17 Let F be the Reeb foliation of S3. We may choose a
complete transversal section S diffeomorphic to R such that the associ-
ated étale holonomy groupoid HolS(T 2,F) is isomorphic to the action
groupoid of an effective action of Z⊕Z on R (see Example 2.3 (2)): one
of the generators acts as a contraction on R+ and as identity on R−, and
the other as contraction on R− and as identity on R+. The associated
fundamental group is therefore again Z⊕ Z.

We shall now prove that the fundamental group is invariant under
weak equivalence. This will show that the fundamental group of the
Reeb foliation in the previous example does not depend on our choice of
a transversal section.

Theorem 3.18 Let G be a connected Lie groupoid with a base-point x0.
Then the functor

Cs(G) −→ π1(G, x0)-sets ,

which sends a covering space E over G to its fiber Ex0 , is an equivalence
of categories.

Proof First, recall that the fiber Ex0 has a natural right action of



194 3 Sheaves on Lie groupoids

π1(G, x0) given by the path-lifting. For any set A with a right π1(G, x0)-
action define

E = A×π1(G,x0) π1(G)( - , x0) .

This is a covering space over G, because s : π1(G)( - , x0) → G0 is a
covering with a free properly discontinuous action of π1(G, x0). It is
now easy to check that this construction gives us the inverse (up to a
natural isomorphism) of the functor above.

Corollary 3.19 Let G be a connected Lie groupoid with a base-point x0,
and let K be a discrete group. Then there is a natural bijection between
the generalized maps of Lie groupoids G → K and conjugacy classes of
homomorphisms of groups π1(G, x0) → K,

GPD(G,K) ∼= [π1(G, x0),K] .

In particular, for any abelian discrete group A, we have a natural bijec-
tion

GPD(G,A) ∼= Hom(π1(G, x0), A) .

Proof A principal K-bundle over G is in particular a covering space over
G, and its fiber over x0 has a principal right K-action and a natural left
π1(G, x0)-action. These two actions on the fiber commute with each
other, so the fiber is in fact a principal K-bundle over π1(G, x0). As in
the proof of Theorem 3.18 we can then show that we have an equivalence
between the category of principal K-bundles over G and principal K-
bundles over π1(G, x0). Finally, any principal K-bundle E over π1(G, x0)
comes from a homomorphism of groups f : π1(G, x0) → K: choose a base
point e0 ∈ E, and define f by

f(ς)e0 = e0ς

for any ς ∈ π1(G, x0). If we choose a different base-point, we get a
homomorphism conjugate to f .

Proposition 3.20 Let P : H → G be a principal G-bundle over H,
where G and H are connected Lie groupoids. Then the functor P ∗ :
Sh(G) → Sh(H) maps Cs(G) into Cs(H).

Proof Let E be a covering space over G. We have to prove that the
associated H-sheaf

ρ : P ⊗G E −→ H0 , p⊗ e �→ π(p)
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is a covering projection. As in the proof of Proposition 3.9, consider the
pull-back

P ×G0 E

q

��

pr2 �� P

π

��

P ⊗G E = (P ×G0 E)/G
ρ

�� P/G = H0

The map pr2 is a covering projection because it is a pull-back of the
covering projection E → G0. Since π is a surjective submersion, so is q,
and hence ρ is a covering as well.

Corollary 3.21 If φ : H → G is a weak equivalence between Lie group-
oids, then so is π1(φ) : π1(H) → π1(G). In particular, the fundamental
groupoids of Morita equivalent Lie groupoids are Morita equivalent. If G

and H are Morita equivalent connected Lie groupoids, then their funda-
mental groups are isomorphic.

Proof First notice that φ induces an equivalence of categories Cs(G) →
Cs(H), by Proposition 3.20. Thus, if G and H are connected, the corol-
lary follows from Theorem 3.18, Proposition 3.14 (iii) and the fact that a
discrete group K can be recovered from the category of K-sets uniquely
up to isomorphism; in fact it is the group of automorphisms of the for-
getful functor from K-sets to sets. In the general case, we apply this
result to the components of the Lie groupoids.

Corollary 3.22 For any Lie groupoid G we have a natural isomorphism
of Lie groupoids

π1(π1(G)) ∼= π1(G) .

If G is weakly equivalent to a discrete groupoid, then the natural homo-
morphism G → π1(G) is an isomorphism of Lie groupoids.

Proof Let G be weakly equivalent to a discrete group. Then the inclusion
Gx0 → G is a weak equivalence, hence π1(Gx0) → π1(G) is a weak
equivalence by Corollary 3.21. But the natural map Gx0 → π1(Gx0) is
also an isomorphism, so we have the diagram of homomorphisms of Lie
groupoids

Gx0

∼=
��

w.e. �� G

��

π1(Gx0)
w.e. �� π1(G)
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It follows that G → π1(G) must be a weak equivalence as well. Any weak
equivalence which is isomorphism on objects (in fact it is identity in our
case) is an isomorphism of Lie groupoids.

If G is weakly equivalent to a discrete groupoid, we use this argu-
ment for each of the components of G to show that G → π1(G) is an
isomorphism of Lie groupoids.

Now the isomorphism π1(π1(G)) ∼= π1(G) follows because π1(G) is
weakly equivalent to a discrete groupoid by Proposition 3.14 (ii).

Denote by GPDdis the full subcategory of GPD of Lie groupoids weakly
equivalent to discrete groupoids. By Proposition 3.14 (ii) and Corollary
3.21 it follows that π1 induces a functor

π1 : GPD −→ GPDdis .

Corollary 3.23 The functor π1 : GPD → GPDdis is left adjoint to the
inclusion GPDdis → GPD.

Proof It is sufficient to show (cf. [39]) that for any Lie groupoid G and
any discrete groupoid K, any generalized morphism G → K factors
uniquely through the natural homomorphism G → π1(G) as a gener-
alized morphism. By passing to connected components, it is enough to
show this for G connected and K a discrete group. In this way, the
corollary follows from Corollary 3.19 because the conjugacy classes of
homomorphisms between discrete groups are exactly the generalized
morphisms between them.

Remark. We can also consider categories of homomorphisms (instead
of generalized maps): write Gpddis for the full subcategory of Gpd of
Lie groupoids weakly equivalent to discrete groupoids. Analogously to
Corollary 3.23, the functor

π1 : Gpd −→ Gpddis

is left adjoint to the inclusion of Gpddis into Gpd. Indeed, for any Lie
groupoid G and any Lie groupoid H weakly equivalent to a discrete
groupoid, any homomorphism φ : G → H factors uniquely through the
canonical homomorphism G → π1(G). (To see this, one uses the fact that
for G and H connected, π1(G)(x, - ) is the universal covering space over
G while H(φ(x), - ) is a covering space over H, for any x ∈ G0 (cf. [48, p.
133]). This gives us a unique equivariant map π1(G)(x, - ) → H(φ(x), - )
whose composition with G(x, - ) → π1(G)(x, - ) agrees with φ.)
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Example 3.24 Let F be a foliation of a manifold M . Consider the
natural homomorphism of Lie groupoids

M −→ Hol(M,F)

given by the inclusion. It induces a homomorphism of Lie groupoids

π1(M) −→ π1(Hol(M,F)) .

Note that this homomorphism is surjective. Indeed, any Hol(M,F)-path
σngn . . . g1σ0 is Hol(M,F)-homotopic to the image of the path

σnτn . . . τ1σ0

in M , where τi is any path inside a leaf of F representing the arrow
gi. The groupoid π1(Hol(M,F)) will be referred to as the fundamen-
tal groupoid of the foliated manifold (M,F), and denoted simply by
π1(M,F).

By the same argument we can see that the inclusion M → Mon(M,F)
induces a surjective homomorphism

π1(M) −→ π1(Mon(M,F)) .

In fact, this is an isomorphism of Lie groupoids. Indeed, for any
Mon(M,F)-path σngn . . . g1σ0, the homotopy class of the associated
path σnτn . . . τ1σ0 as above is uniquely determined by the Mon(M,F)-
homotopy class of σngn . . . g1σ0. Thus this construction defines an in-
verse of π1(M) → π1(Mon(M,F)).

Alternatively, one can show this by using Theorem 3.18, and by the
isomorphism Cs(M) ∼= Cs(Mon(M,F)) (assuming M is connected). The
later is true because any covering space over M admits a unique action
of Mon(M,F) by path-lifting.

This, in particular, implies the following: if F is a foliation with injec-
tive holonomy homomorphisms (e.g. if any leaf of F is simply connected),
then

π1(M,F) ∼= π1(M) .

Indeed, in this case we have Hol(M,F) = Mon(M,F).

Let F be a foliation of a manifold M . To describe the kernel of the
natural homomorphism π1(M) → π1(Hol(M,F)), let us introduce the
following terminology.

Suppose that σ = σngn . . . g1σ0 is a Hol(M,F)-path. If τi is a path
inside a leaf representing gi, for any i = 1, . . . , n, we will say that the
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concatenation of paths in M

σ̃ = σn(τn . . . (σ1(τ1σ0)) . . .)

is a realization of σ. Every Hol(M,F)-path σ has a realization, and such
a realization represents the same arrow in π1(Hol(M,F)) as σ. However,
not every deformation between two Hol(M,F)-paths can be realized by
a homotopy between their realizations. We will now show that it can be
realized by a more general kind of ‘F-homotopy’.

Let α and β be two paths from x to y in M . Then an F-homotopy
from α to β is a map

H : I2(k) → M ,

where I2(k) is the square [0, 1]2 with k ≥ 0 holes in the interior (thus it is
a compact manifold of dimension 2), such that H(0, - ) = α, H(1, - ) = β,
H([0, 1], 0) = {x}, H([0, 1], 1) = {y}, and the boundary of each hole is
mapped by H to a path with trivial holonomy inside a leaf of F . The
paths α and β are F-homotopic if there exists an F-homotopy between
them. Note that if α and β are homotopic, they are also F-homotopic.
In particular, ‘being F-homotopic’ is a well-defined equivalence relation
between the homotopy classes of paths in M .

Proposition 3.25 Let F be a foliation of a manifold M . Then two ar-
rows in π1(M) map to the same arrow along the natural homomorphism

π1(M) −→ π1(Hol(M,F))

if and only if they are F-homotopic.

Proof Note that any path in M is at the same time a Hol(M,F)-path
of order 0, and that it is the unique realization of itself. Therefore the
proposition follows from the following lemma.

Lemma 3.26 Let F be a foliation of a manifold M . Suppose that σ

and σ′ are two Hol(M,F)-homotopic Hol(M,F)-paths from x to y, with
realizations σ̃ and σ̃′. Then σ̃ and σ̃′ are F-homotopic.

Proof Since F-homotopies, just like usual homotopies, can be concate-
nated, it is enough to show that if either

(i) there exists a deformation between σ and σ′, or
(ii) σ and σ′ differ by a multiplication equivalence, or
(iii) σ and σ′ differ by a concatenation equivalence,

then there exists an F-homotopy between σ̃ and σ̃′. Let σ =
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σngn . . . g1σ0 and σ′ = σ′
n′g′n′ . . . g′1σ

′
0 be the Hol(M,F)-paths, and write

σ̃ = σnτn . . . τ1σ0 and σ̃′ = σ′
n′τ ′

n′ . . . τ ′
1σ

′
0 for their realizations.

(i) First note that in this case we have n = n′. Observe that any
deformation (Dn, dn, . . . , d1,D0) between σ and σ′ can be locally realized
in the following sense: for any t′ ∈ [0, 1] and any realization

σ̃t′ = Dn(t′, - )ρn . . . ρ1D0(t′, - )

of σt′ = Dn(t′, - )dn(t′) . . . dn(t′)D0(t′, - ), there exists a neighbourhood
W of t′ in [0, 1] such that the realization σ̃t′ can be extended to a re-
alization of the deformation (Dn, dn, . . . , d1,D0) over W , which is given
by a collection of maps

νi : W × [0, 1] −→ M , i = 1, . . . , n

such that νi(t′, - ) = ρi and

Dn(t, - )νn(t, - ) . . . ν1(t, - )D0(t, - )

is a realization of σt for any t ∈ W .
It follows that we can find 0 = t1 < t2 < · · · <tm < tm+1 = 1

and realizations σ̃tj of σtj , j = 1, . . . ,m, such that σ̃0 = σ̃

and σ̃tj can be extended to a realization (given by (νj
n, . . . , νj

1))
of the deformation (Dn, dn, . . . , d1,D0) over [tj , tj+1] with
Dn(1, - )νm

n (1, - ) . . . νm
1 (1, - )D0(1, - ) equal to σ̃′. Note that for

any i = 1, . . . , n and any j = 1, . . . ,m, the path ωj
i = νj

i (tj+1, - )
represents the same arrow in Hol(M,F) as αj+1

i = νj+1
i (tj+1, - ).

By a reparametrization of the maps (νj
i ) we can now define an F-

homotopy from σ̃ to σ̃′ defined on I2(n(m− 1)), as illustrated in Figure
3.1 for the case m = 3 and n = 1.

(ii) Note that in this case we can assume without loss of generality
that n = 2, n′ = 1 and σ1 is a constant path. Note that σ0 = σ′

0, σ2 = σ′
1

and τ2τ1 has the same holonomy as τ ′
1. Now we can find an F-homotopy

between σ̃ and σ̃′ defined on the square with only one hole as indicated
in Figure 3.2.

(iii) Here we can assume without loss of generality that n = 1, n′ = 0
and g1 is a unit arrow. Thus we have σ1σ0 = σ′

0 and τ1 has trivial
holonomy. Now Figure 3.3 illustrates how to construct an F-homotopy
between σ̃ and σ̃′, defined on I2(1).

As an application, we will now show that the fundamental group of
an analytic foliation of codimension one is non-trivial. This statement is
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Figure 3.1 Case (i)

in fact a refinement of the Haefliger’s theorem, with an analogous proof
(see also [18, 33]).

Proposition 3.27 Let F be an analytic codimension one foliation of
a manifold M . Then any γ : S1 → M transversal to F represents a
non-trivial element of π1(M,F) (and hence also of π1(M)).

Proof Assume that γ represents a unit element of π1(M,F). By
Lemma 3.26 it follows that there exists an F-homotopy between γ

(reparametrized by [0, 1])) and the constant loop (say at the base point
γ(1)). We can reparametrize this F-homotopy to a smooth map

H : B2(m) −→ M ,

defined on a disk B2(m) with m holes (thus a smooth compact manifold)
such that H extends γ : S1 → M and maps the boundary of each hole
into a path with trivial holonomy inside a leaf.

Now we can proceed in the same way as in the proof of Haefliger’s
theorem, cf. [48]. We can deform H a little so that the pull-back H∗(F)
of F along H is a foliation of B2(m) with finitely many Morse singular-
ities lying on different leaves, transversal to the outer boundary (which
maps as γ), and the boundaries of the holes are leaves of H∗(F) with
trivial holonomy. In particular, the foliation H∗(F) has concentric cir-
cles around the holes. Now we can replace the holes with centres, and
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Figure 3.2 Case (ii)

exactly the same argument as in the proof of Haefliger’s theorem shows
that the foliation F can not be analytic.

Corollary 3.28 Let F be an analytic codimension one foliation of a
compact manifold M with base-point x0. Then the fundamental group
π1(M,F)x0 (and hence also π1(M,x0)) is non-trivial.

Proof Since M is compact, there exists a transversal loop in (M,F) (see
e.g. [48, Lemma 2.28]).

3.4 G-sheaves of R-modules

From now on we will assume that the reader is familiar with the basics
of homological algebra. There are many good expositions, e.g. [11, 31,
38, 60], and we will sometimes use the latter as an explicit reference.

Let R be a commutative ring with unit. In practice, R will always
be the field R of reals or the field C of complex numbers. If G is a Lie
groupoid, we denote by

ShR(G)

the category of G-sheaves of R-modules. These are G-sheaves A on G0

for which each stalk Ax has the structure of an R-module. Moreover,
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Figure 3.3 Case (iii)

this structure is required to vary continuously in x, and to be preserved
by the action Ay → Ax of any arrow g : x → y in G.

If φ : H → G is a homomorphism of Lie groupoids, the adjoint functors
φ∗ : Sh(G) → Sh(H) and φ∗ : Sh(H) → Sh(G) of Section 3.1 clearly
preserve the structure of such sheaves of R-modules, and define adjoint
functors

φ∗ : ShR(G) �� ShR(H) : φ∗



The same is true for the functor P ∗ induced by a general morphism
P : H → G, and in fact all the statements in Section 3.2 extend to
the categories ShR(G) of sheaves of R-modules on Lie groupoids. In
particular, ShR(G) and ShR(H) are equivalent categories whenever G

and H are Morita equivalent groupoids.
Recall that for any topological space X, the category ShR(X) is

an abelian category. Moreover, for any point x ∈ X, the functor
ShR(X) → {R-modules}, which sends a sheaf A to its stalk Ax, is an
exact functor. Thus, since a map A → B between sheaves of R-modules
is an isomorphism if and only if each map of stalks Ax → Bx is an
isomorphism of R-modules, the category ShR(X) inherits many of the
exactness properties from the more familiar category of R-modules.

In exactly the same way, ShR(G) is an abelian category. For example,
if A and B are two G-sheaves of R-modules, their sum A⊕B as sheaves
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of R-modules on G0 inherits a natural G-action, and this defines the
sum in ShR(G). The same remark applies to the construction of kernels
and cokernels, and of infinite sums. Furthermore, for any homomorphism
φ : H → G between Lie groupoids, the functor φ∗ : ShR(G) → ShR(H)
is exact, as is clear by comparing the stalks:

φ∗(A)y = Aφ(y)

for any point y ∈ H0. The functor φ∗ also preserves infinite sums, be-
cause it has a right adjoint.

We consider some properties of the abelian category ShR(G) which
are important for developing homological algebra in this category.

First of all, as we already indicated, ShR(G) has arbitrary (small)
colimits,, which can be constructed from cokernels and infinite sums.
Furthermore, the construction of directed (or filtered) colimits indexed
by a category I is an exact functor ShR(G)I → ShR(G), again because
it suffices to check this at the level of stalks. Thus, the abelian category
ShR(G) satisfies the Grothendieck axiom (AB5) [60, p. 57].

Next, although ShR(G) is a large category, for a given sheaf of R-
modules A there is only a set of subsheaves of R-modules B ⊂ A. Indeed,
this is clear because such a B is a subspace of the étale space of A having
some additional properties. A large category with the property that there
is only a set of isomorphism classes of monomorphisms B → A into a
given object A is called well-powered [60, p. 385].

Next we consider injective objects. Recall that an object I in an
abelian category A is injective if for any monomorphism A → B in
A, any map A → I can be extended to a map B → I. The category
A is said to have enough injectives if for every object A there exists a
monomorphism A → I into some injective object I. We recall, without
proof, the following elementary facts concerning adjoint functors and
injectives.

Lemma 3.29 Let φ∗ : A � B : φ∗ be functors between abelian cate-
gories, and assume that φ∗ is a left adjoint to φ∗.

(i) The functor φ∗ is faithful if and only if for each object A of A the
unit ηA : A → φ∗φ

∗A is a monomorphism [39].
(ii) If φ∗ preserves monomorphisms then φ∗ preserves injectives.
(iii) If φ∗ is faithful and exact, and B has enough injectives, then so

does A.

This lemma can be used to construct explicit functorial injective res-
olutions in our categories ShR(G) of G-sheaves of R-modules. Recall



204 3 Sheaves on Lie groupoids

that the usual category of R-modules has enough injectives. First, we
deduce from this that our category ShR(X) of sheaves of R-modules on
a topological space X has enough injectives. To this end, write Xδ for
the space X with the discrete topology, and p : Xδ → X for the identity
map. Then a sheaf of R-modules B on Xδ is simply a family {Bx}x∈X

of R-modules. If A is a sheaf of R-modules on X, and Ax → Jx is an
embedding of the stalk Ax into an injective R-module Jx, then the fam-
ily {Ax → Jx} can be viewed as an embedding p∗(A) → J in ShR(Xδ),
and the desired embedding of A into an injective object of ShR(X) can
be constructed as the composite A → p∗p

∗(A) → p∗(J). Thus ShR(X)
has enough injectives. Now consider a Lie groupoid G. The unit homo-
morphism u : G0 → G induces adjoint functors

u∗ : ShR(G) �� ShR(G0) :u∗

 ,

and for an object B of ShR(G), an embedding into an injective can be
constructed from such an embedding u∗(B) → I in ShR(G0), just shown
to exist, again as a composite of the form B → u∗u

∗(B) → u∗(I). This
proves that ShR(G) has enough injectives.

Now we consider the ‘free’ sheaves of R-modules. The forgetful functor

ShR(G) −→ Sh(G)

from G-sheaves of R-modules to G-sheaves of sets has a left adjoint. We
will denote this adjoint by

E �→ R[E] ,

where E is any G-sheaf of sets. As a sheaf, R[E] is simply the direct
sum ⊕r∈RE, and its G-action is inherited from that of E. Thus for the
stalks we have the identity

R[E]x = R[Ex] ,

where the right hand side is the usual free R-module on the set Ex. The
adjointness property means that for any object A of ShR(G), any map
of G-sheaves E → A extends uniquely to a map R[E] → A in ShR(G).

If one combines this construction with the covering of any sheaf E by
a family {Ũi} of sheaves as in Example 3.5, one can conclude that any
object A in ShR(G) is covered by a family of objects of the form R[Ũi],
or in other words, there exists an exact sequence of the form⊕

i∈I

R[Ũi] −→ A −→ 0 .
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This means that the family of G-sheaves of R-modules of the form R[Ũ ],
for any open subset U of G0, generates the category ShR(G) [39, p. 127].

We summarize the properties of the category ShR(G) discussed so far
in the following proposition.

Proposition 3.30 Let G be a Lie groupoid.
(i) The category ShR(G) is an abelian category with enough injectives,

it satisfies Grothendieck’s axiom AB5 and has a small set of generators
(indexed by open sets U ⊂ G0).

(ii) Each homomorphism φ : H → G between Lie groupoids induces
adjoint functors

φ∗ : ShR(G) �� ShR(H) :φ∗

 .

The left adjoint φ∗ is an exact functor (hence φ∗ preserves injectives).
(iii) If φ : H → G is a weak equivalence, then φ∗ : ShR(G) → ShR(H)

is an equivalence of abelian categories.

3.5 Derived categories

In this section we review the construction of the derived category asso-
ciated to the abelian category ShR(G) of sheaves of R-modules on a Lie
groupoid G. Given the properties of such abelian categories established
in the previous section, the material in this section is simply a particular
instance of the general theory as exposed e.g. in [60, Chapter 10] and
many readers will be familiar with it.

We shall write

ChR(G)

for the category of complexes in ShR(G). Unless explicitly stated other-
wise, we will work with cochain complexes

. . . −→ An d−→ An+1 −→ . . . n ∈ Z ,

and view chain complexes C = C• as cochain complexes by reindexing
Cn = C−n. As usual, we call a complex A = A• bounded below if there
exists a k ∈ Z such that An = 0 for any n < k. The full subcategory of
ChR(G) consisting of bounded bellow complexes is denoted by Ch+

R(G).
We also use the categories Ch−

R(G) and Chb
R(G) of complexes which are

bounded above, respectively bounded (from both sides).
Later, we will usually work over the field R of reals, and we adopt the
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convention that Ch(G) stands for ChR(G), and similarly for Ch+(G),
Ch−(G) and Chb(G).

The standard notion of cochain homotopy [60, p. 15] defines an equiv-
alence relation on the maps A → B between any two complexes A and
B. This gives rise to a quotient of the category ChR(G), viz. the category

KR(G) ,

consisting of complexes in ShR(G) and homotopy classes of maps. There
are similar quotient categories K+

R (G), K−
R (G) and Kb

R(G), of Ch+
R(G),

Ch−
R(G) and Chb

R(G).
A map f : A → B in ChR(G) is called a quasi-isomorphism (q.i.) if f

induces isomorphisms

Hn(A) −→ Hn(B)

for each n ∈ Z. Here Hn(A) and Hn(B) are the cohomology groups con-
structed as objects of ShR(G). By the remark in the previous section,
a map f : A → B is a quasi-isomorphism if and only if for each point
x ∈ G0, the map fx : Ax → Bx is a quasi-isomorphism between com-
plexes of ordinary R-modules (instead of sheaves). Of course if f is chain
homotopic to another map f ′ : A → B, then f is a quasi-isomorphism if
and only if f ′ is. So ‘quasi-isomorphism’ is also a well defined property of
maps in KR(G). The derived category DR(G) is the category obtained
from KR(G) by formally inverting all quasi-isomorphisms. It requires
some care to prove that this category DR(G) actually exists, but the
properties of ShR(G) established in Proposition 3.30 suffice for this (cf.
[60, Remark 10.4.5]). A more explicit description of DR(G) is as follows:
It has the same objects as ChR(G). Furthermore, a morphism A → B

in DR(G) is an equivalence class of diagrams of the form

A
q←− C

f−→ B

where q is a quasi-isomorphism. Two such diagrams A ← C → B and
A ← C ′ → B are equivalent if there is a diagram of the form

C

����
��

��
�

��
��

��
��

��

A D

p

��

p′

��

B

C ′

���������

���������



3.5 Derived categories 207

commuting in KR(G), i.e. up to homotopy, and where p and p′ are
quasi-isomorphisms. They then represent the same morphism A → B in
DR(G).

There is an evident functor π : ChR(G) → DR(G), which sends an
arrow A → B to the equivalence class of the diagram A = A → B. This
functor enables one to formulate the universal property of the category
DR(G), similar to the property of Theorem 2.11. Namely, any functor
F : ChR(G) → C into any category C which turns quasi-isomorphisms
into isomorphisms can be factored as F = F̄ ◦π for a unique functor F̄

[60, Proposition 10.1.2].
In a similar way, one can construct derived categories

D+
R(G) , D−

R(G) , Db
R(G)

by formally turning quasi-isomorphisms into isomorphisms.
In the case of bounded below complexes (i.e. Sh+

R(G) and Chb
R(G))

there is a even more concrete description of the derived category [60,
Theorem 10.4.8]: The derived category D+

R(G) is equivalent to the full
subcategory of K+

R (G) whose objects are bounded below complexes I

with the property that each In is an injective object of ShR(G). Similarly,
Db

R(G) is equivalent to the full subcategory of K+
R (G) whose objects are

bounded below complexes I with each In injective, and with Hn(I) = 0
for n sufficiently large.

Let φ : H → G be a homomorphism between Lie groupoids. The
adjoint functors φ∗ and φ∗ between ShR(G) and ShR(H) induce adjoint
functors

φ∗ : KR(G) �� KR(H) :φ∗ .



Since φ∗ is exact, it maps quasi-isomorphisms to quasi-isomorphisms,
and hence it immediately induces a functor

φ∗ : DR(G) −→ DR(H) .

If φ is a weak equivalence, then φ∗ : ShR(G) → ShR(H) is an equivalence
of categories, and hence so are φ∗ : KR(G) → KR(H) and φ∗ : DR(G) →
DR(H). In particular:

Proposition 3.31 If G and H are Morita equivalent groupoids, then
DR(G) and DR(H) are equivalent categories.

Furthermore, if φ is a weak equivalence, then φ∗ : ShR(G) → ShR(H)
is also an equivalence, inverse to φ∗ up to a natural isomorphism. In
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particular, φ∗ : ChR(H) → ChR(G) preserves quasi-isomorphisms, and
induces a functor DR(H) → DR(G), inverse to φ∗.

In general, however, φ∗ does not preserve the quasi-isomorphisms. On
the other hand, φ∗ does preserve injectives, and one can define a right
derived functor

Rφ∗ : D+
R(H) −→ D+

R(H)

by Rφ∗(A) = φ∗(I), where A → I is any quasi-isomorphism of the
complex A into a complex I of injectives. (This does not depend on
the choice of I because I is unique up to homotopy equivalence, i.e.
up to isomorphism in K+

R (H).) This functor Rφ∗ is right adjoint to
φ∗ : D+

R(G) → D+
R(H).

These constructions extend to generalized morphisms P : H → G, to
give adjoint functors

P ∗ : D+
R(G) �� D+

R(H) :RP∗ .



This follows by the universal property. Explicitly, we can factor P as
φ ◦ ε−1 where φ : K → G is a homomorphism and ε : K → H a weak
equivalence, and then we get

P ∗ = ε∗ ◦φ∗

and

RP∗ = Rφ∗ ◦ ε∗ .

We shall also make use of the internal tensor and Hom. If A and B

are objects of ChR(G), one defines complexes A⊗B and Hom(A,B) by

(A⊗B)n =
⊕

p+q=n

Ap ⊗R Bq

and

Hom(A,B)n =
∏

q−p=n

Hom(Ap, Bq)

as usual. (Observe that with this grading, there is indeed a bijective
correspondence between maps A ⊗ B → C of degree d and maps A →
Hom(B,C) of degree d.)

In general for a fixed A, the functor A⊗ - : ChR(G) → ChR(H) does
not preserve quasi-isomorphisms. However, we will mainly work over a
field (e.g. R = R), in which case it does, so that A⊗B is well defined as
a functor ⊗ : D(G) × D(G) → D(G). (Remember our convention that
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omitting the subscript R means that we take R = R.) In the general case
it is possible to obtain a well defined functor ⊗L : D−

R(G) ×D−
R(G) →

D−
R(G), by replacing a bounded above complex B by a quasi-isomorphic

complex F consisting of free R-modules.
For a fixed A, the functor Hom(A, - ) : ChR(G) → ChR(G) does not

preserve quasi-isomorphisms either. However, just as for Rφ∗, one can
obtain a well defined functor

RHom(A, - ) : D+
R(G) −→ DR(G)

by RHom(A,B) = Hom(A, I) where B → I is a quasi-isomorphism
into a bounded below complex of injectives. Moreover, if I is such
a complex then Hom( - , I) is exact, so it maps a quasi-isomorphism
A → A′ between bounded above complexes to a quasi-isomorphism
Hom(A′, I) → Hom(A, I). (Indeed, by a mapping cone argument it suf-
fices to prove that Hom(A, I) is again acyclic (i.e. quasi-isomorphic to
zero) whenever A itself is acyclic. But Hom(A, I) is the product total
complex of the double complex Hom(A−p, Iq) which has acyclic rows
(for q fixed). So Hom(A, I) is acyclic by [60, Acyclic Assembly Lemma
2.7.3]. Thus, one obtains a well defined ‘derived internal hom’ functor

RHom : D−
R ×D+

R(G) −→ D+
R(G) .

We will also use the notation Hom(A,B) for the ‘external hom’: for
A and B in ShR(G) this is an R-module, not a sheaf. At the level of
derived categories this gives a functor

RHom: D−
R(G)×D+

R(G) −→ D+
R(pt) = D+

R

into the derived category of bounded below complexes of R-modules.
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Sheaf cohomology

In this chapter we have attempted to give a systematic treatment of sheaf
cohomology for étale groupoids. This cohomology applies in particular
to Lie groupoids for which there are ‘enough’ equivariant sheaves. It
is possible to give a more precise formulation of this property (in the
style of Tannaka duality), but we will refrain from doing that here. We
only observe that the class of Lie groupoids having enough equivariant
sheaves is closed under weak equivalence (cf. Section 3.2), and includes
étale (and foliation) groupoids (cf. Section 2.3).

In the context of foliations, the sheaf cohomology of étale groupoids
was described in concrete terms by Haefliger [24]. His approach was
based on the bar resolution, to be explained in Section 4.2 of this chap-
ter. It is possible to approach the cohomology from a Grothendieck style
point of view, using derived categories and derived functors. The latter
approach has the advantage that many general properties such as func-
toriality, Morita invariance, duality, etc., will be easily derivable. Early
references for the treatment of cohomology of étale groupoids along these
lines and for the relation to the bar complex include [43, 58].

In Section 4.5 we will show how to describe the cohomology of such
étale groupoids in terms of the much easier cohomology of small cat-
egories. More precisely, one can associate to each étale groupoid G a
small discrete category Emb(G), and prove an isomorphism of the form
H∗(G,A) = H∗(Emb(G), A), under suitable conditions (Theorem 4.21).
This result was first proved in [44] and later in somewhat more general
form in [16]. This approach to the sheaf cohomology of étale groupoids
has already turned out to be very useful in the construction of charac-
teristic classes of foliations [16], and in the description of extensions of
groupoids [47], and we expect it to have many other applications.

Much of this chapter is an exposition of known constructions and re-
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sults, which have appeared in scattered places. The only thing which is
new is a detailed comparison, for a foliated manifold (M,F), between
the cohomology of the ambient manifold M and that of the holonomy
groupoid Hol(M,F). This section was prompted by a question of Hae-
fliger, as to what extent the manifold M itself behaves as a classifying
space for the holonomy groupoid (see Boulder meeting).

There are many aspects of the cohomology of foliations and their
groupoids which should have been included, but for which there was
no space or time. In particular, we would have liked to discuss the
relation to other cohomologies, such as the basic cohomology and the
leaf-wise cohomology of foliations, and the connections to cyclic coho-
mology, Bredon cohomology and K-theory, and to the cohomology of
the classifying space. The reader will find some of these points discussed
in [7, 13, 21, 46, 56].

4.1 Sheaf cohomology of foliation groupoids

In this section we will discuss the general framework of sheaf cohomol-
ogy for Lie groupoids. Although the definitions and some of the general
statements hold for Lie groupoids in general, they are mainly of inter-
est for foliation groupoids, i.e. groupoids which are Morita equivalent to
étale ones. We recall that these include groupoids arising from foliations,
such as the holonomy and monodromy groupoids. In later sections, we
will restrict our attention to étale groupoids. We will work with sheaves
over a ring R, as before, and leave R unspecified. Thus, in this section
‘G-sheaf’ means G-sheaf of R-modules.

Let G be a Lie groupoid, and let A be a G-sheaf. The sheaf cohomol-
ogy of G with coefficients in A is defined by

Hn(G,A) = Rnp∗(A) n = 0, 1, 2, . . . (1)

Here p : G → 1 is the unique homomorphism into the one-point groupoid,
and Rnp∗(A) = Hn(Rp∗(A)) is the cohomology in degree n of the com-
plex Rp∗(A). Recall that p∗ is the functor Γinv(G, - ), so that Hn(G,A)
can be described explicitly as the cohomology of the complex

Γinv(G, I0) −→ Γinv(G, I1) −→ Γinv(G, I2) −→ . . . (2)

where 0 → A → I0 → I1 → I2 → . . . is any resolution of A by injective
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G-sheaves. Recall also that for any G-sheaf B,

Γinv(G,B) = HomG(R,B)

is the R-module of morphisms of G-sheaves from the constant sheaf R

into B.

Remark. We point out that in the following two cases, our definition
agrees with the usual one:

(a) If M is a manifold, we can view M as the unit (étale) groupoid.
An M -sheaf A is just a sheaf on A, and Hn(M,A) is the usual sheaf
cohomology of spaces [19].

(b) If G is a group, we can view G as a discrete groupoid over a one-
point space, and Hn(G,A) is the usual cohomology of the group G [60].

The definition (1) and the description (2) obviously apply to any
bounded below complex A of G-sheaves. In this case one sometimes
refers to Hn(G,A) as the hypercohomology. If A is such a complex, one
can form the cohomology G-sheaves Hq(A) (as objects of the abelian
category ShR(G)), and the hypercohomology can be expressed in terms
of ‘ordinary’ cohomology by the so-called hypercohomology spectral se-
quence:

Proposition 4.1 For any bounded below complex A of G-sheaves there
is a spectral sequence

Ep,q
2 = Hp(G,Hq(A)) ⇒ Hp+q(G,A) .

Proof The proof is standard: There exists a double complex A → I0 →
I1 → . . . where each Ip is a bounded below complex of injective G-
sheaves Ip,q, with the property that for each q, not only 0 → Aq →
I0q → I1q → . . . is an injective resolution of Aq, but the same is true
for the boundaries 0 → Bq(A) → Bq(I0,•) → Bq(I1,•) → . . ., the cycles
0 → Zq(A) → Zq(I0,•) → Zq(I1,•) → . . . and the cohomology G-sheaves
0 → Hq(A) → Hq(I0,•) → Hq(I1,•) → . . . (cf. e.g. [60, p. 149] or [31, p.
301]).

The spectral sequence of the double complex Γinv(G, Ip,q) is the spec-
tral sequence of the proposition. Indeed, the total complex ⊕p+q=nIp,q

is a complex of injectives which is quasi-isomorphic to A, hence the total
complex of Γinv(G, Ip,q) computes Hp+q(G,A).

On the other hand, for a fixed p ≥ 0, one has

Hq(Γinv(G, Ip,•)) = Γinv(G,Hq(Ip,•))
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because Bq(Ip,•), Zq(Ip,•) and Hq(Ip,•) are all injective. Since

Hq(I0,•) −→ Hq(I1,•) −→ . . .

is an injective resolution of Hq(A), one has

HpHqΓinv(G, I) = HpΓinv(G,Hq(A)) ,

giving the desired description of the E2-term.

Remark. It follows by the same double complex that if A is a bounded
below complex with Hp(G,Aq) = 0 for each q and each p > 0, then

Hp(G,A) = Hp(Γinv(G,A)) .

Indeed, in this case Γinv(G, I•,q) is an injective resolution of Γinv(G,Aq),
and Γinv(G, I) is a double complex with acyclic columns (p fixed). So
the complex Γinv(G,A) computes the cohomology of the total complex
which we know to be H∗(G,A).

The cohomology groups Hq(G,A) are covariant in the coefficients A

and contravariant in the groupoid G. The first property is obvious from
the fact that Rp∗ is a functor. For the second, consider a homomor-
phism φ : G′ → G between Lie groupoids. Then for any G-sheaf (or any
bounded below complex of G-sheaves) A, one can construct a canonical
map

φ∗ : Hn(G,A) −→ Hn(G′, φ∗(A)) , (3)

explicitly in term of injective resolutions, as follows: If A → I is an
injective resolution of G-sheaves (i.e. a quasi-isomorphism into a complex
consisting of injectives), then φ∗A → φ∗I is again a quasi-isomorphism.
Let φ∗I → J be an injective resolution of G′-sheaves. Then the composite
φ∗A → φ∗I → J is an injective resolution of φ∗A. The pull-back of
invariant sections

Γinv(G, I) −→ Γinv(G′, φ∗I) (4)

when composed with Γinv(G′, φ∗I) → Γinv(G′, J) gives a map Γinv(G, I)
→ Γinv(G′, J), and hence a morphism (3) after taking cohomology.

In the special case where φ is a weak equivalence, the functor φ∗ is
an equivalence of categories, hence it preserves injectives, and (4) is an
isomorphism. Thus (3) is an isomorphism as well. For the record, we
state this explicitly:
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Proposition 4.2 (Morita invariance of cohomology) A weak equ-
ivalence φ : G′ → G induces isomorphisms

Hn(G,A) −→ Hn(G′, φ∗A) n = 0, 1, 2, . . .

for any complex A of G-sheaves which is bounded below.

Remark 4.3 (Leray spectral sequence) The cohomology groups
Hn(G,A) depend covariantly on A through the Leray spectral sequence

Ep,q
2 = Hp(G,Rqφ∗(B)) ⇒ Hp+q(G′, B)

associated to a homomorphism φ : G′ → G and a bounded below com-
plex B of G′-sheaves. Here Rqφ∗(B) is the q-th cohomology G-sheaf
Hq(Rφ∗(B)) of the complex of G-sheaves Rφ∗(B). This spectral se-
quence can be viewed as a special case of the hypercohomology spec-
tral sequence, as follows: Let B → I be an injective resolution, and
consider the complex φ∗I and its spectral sequence Hp(G,Hq(φ∗I)) ⇒
Hp+q(G,φ∗I) as in Proposition 4.1. Here we have Hq(φ∗I) = Rqφ∗(B)
by definition, while Hn(G,φ∗I) = Hn(G′, I) = Hn(G′, B) because
Γinv(G,φ∗I) = Γinv(G′, I) and I is a resolution of B.

4.2 The bar resolution for étale groupoids

In this section we continue the discussion of sheaf cohomology of group-
oids, but we focus on étale groupoids. The results in this section do not
apply to Lie groupoids generally, although by the Morita invariance of
cohomology they do extend (in a suitable form) to foliation groupoids.

Fix a Lie groupoid G, and consider for each n ≥ 0 the space

Gn = {(g1, . . . , gn) | s(gi) = t(gi+1)} .

Thus Gn is the space of strings

•
g1←− •

g2←− . . .
gn←− •

of composable strings in the groupoid G. One can construct Gn as an
iterated fibered product G1 ×G0 G1 ×G0 . . . ×G0 G1 along submersions
(the maps s and t and their pull-backs), so Gn is a smooth manifold for
each n ≥ 0. For n = 1, 2, we recover the spaces G0 and G1 of objects and
arrows in G. These spaces Gn together form a simplicial manifold G•,
called the nerve of G, denoted also Nerve(G). The simplicial structure
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maps

di : Gn −→ Gn−1 i = 0, . . . , n

are defined by

di(g1, . . . , gn) =


(g2, . . . , gn) ; i = 0

(g1, . . . , gigi+1, . . . , gn) ; 0 < i < n

(g1, . . . , gn−1) ; i = n,

while the degeneracy maps

sj : Gn−1 −→ Gn j = 0, . . . , n− 1

map a string (g1, . . . , gn−1) to the string obtained by inserting the iden-
tity arrow 1s(gj ) between gj and gj+1.

Let λn : Gn −→ G0 be the ‘last vertex’ map,

λn(g1, . . . , gn) = s(gn) .

Any G-sheaf A gives a sheaf

A(n) = λ∗
n(A)

on Gn, with stalk As(gn ) at (g1, . . . , gn). Furthermore, any simplicial
structure map di : Gn → Gn−1 induces an isomorphism

d∗i (A(n−1)) −→ A(n) (5)

obtained canonically from the given action of G on A. Indeed, the stalk
of d∗i (A(n−1)) at (g1, . . . , gn) is either As(gn ) (for i < n) or As(gn−1) (for
i = n), and the stalk of the isomorphism (5) is either the identity on
As(gn ) or the action by gn : As(gn−1) → As(gn ). So by pulling back sections
along di : Gn → Gn−1 and composing with these isomorphisms (5), one
obtains maps

δi : Γ(Gn−1, A(n−1)) −→ Γ(Gn, d∗
i (A(n−1))) ∼= Γ(Gn, A(n)) .

These give the Γ(Gn, A(n)) the structure of a cosimplicial R-module,

Γ(G0, A(0)) ��
�� Γ(G1, A(1)) ��

��
�� Γ(G2, A(2)) . . . (6)

By taking alternating sums of the δi in the usual way, we thus obtain a
cochain complex Γ(G•, A(•)). (The cohomology of this complex can be
thought of as some sort of Čech cohomology for the ‘hypercover’ G• of
the groupoid G.) The same constructions apply of course to any complex
of G-sheaves A, to give a double complex Γ(Gp, A

q
(p)).
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An important property of this construction for any étale groupoid G

is that if A is an injective G-sheaf, each of the sheaves A(n) on Gn is
again injective. For latter use, we state this in somewhat more general
form, as follows:

Lemma 4.4 Let G be a Lie groupoid, and let E be a right G-sheaf. Let
pr : E � G → G be the projection from the semi-direct product groupoid
E � G.

(i) The functor pr∗ : ShR(G) → ShR(E � G) has a left adjoint pr!.
(ii) This left adjoint pr! preserves monomorphisms, so pr∗ preserves

injectives.
(iii) For a homomorphism φ : G → G′ of Lie groupoids, the associated

fibered product

φ∗(E) � G′

pr′

��

φ̃
�� E � G

pr

��

G′ φ
�� G

satisfies the base change formula

pr′!φ̃
∗(B) ∼= φ∗pr!(B)

for any (E � G)-sheaf B, naturally in B.
Analogous assertions of course hold for any left G-sheaf E.

Proof Recall that the groupoid E � G has the manifold E as space of
objects, and arrows g : eg → e for any g : y → x in G and e ∈ Ex. The
projection pr maps this arrow g : eg → e to g : y → x. For a (E�G)-sheaf
B of R-modules, one constructs the left adjoint pr!(B) as the sheaf on
G0 with stalk

pr!(B)x =
⊕
e∈Ex

Be

at any point x ∈ G0. This sheaf has a natural G-action, because any
arrow g : y → x induces an isomorphism pr!(B)x → pr!(B)y which
maps the summand Be for e ∈ Ex to the summand Beg via the action
Be → Beg of the arrow g : eg → e in E � G. It is not difficult to
verify that this indeed defines a left adjoint to pr∗. Furthermore, it is
clear from this stalk-wise description that pr! preserves monomorphisms
and satisfies the base-change formula (iii). Finally, the assertion about
injectives follows by Lemma 3.29.
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Let G be an étale groupoid. The simplicial manifold G• described
above is closely related to a simplicial right G-sheaf B•(G),

B0(G) B1(G)




 B2(G) . . .










which we call the bar resolution of G. It is defined as follows: Let
Bn(G) = Gn+1 be the space of (n + 1)-strings (g1, . . . , gn, h) ∈ Gn+1.

•
g1←− . . .

gn←− •
h←− •

The groupoid G acts on the right on Bn(G). This action is along the
last vertex map

λ = λn : Bn(G) −→ G0

sending (g1, . . . , gn, h) to s(h). This is an étale map because G is an étale
groupoid. An arrow k : z → s(h) in G acts on this string by

(g1, . . . , gn, h)k = (g1, . . . , gn, hk) .

The simplicial face maps

di : Bn(G) −→ Bn−1(G) i = 0, 1, . . . , n

are defined by

di(g1, . . . , gn, h) =


(g2, . . . , gn, h) ; i = 0

(g1, . . . , gigi+1, . . . , gn, h) ; 0 < i < n

(g1, . . . , gnh) ; i = n,

These are obviously maps of G-sheaves.
Let R[Bn(G)] be the free G-sheaf of R-modules on the G-sheaf Bn(G)

of sets. By taking alternating sum of the di, one obtains a cochain com-
plex of G-sheaves of R-modules, naturally augmented by the constant
sheaf R,

0 ←− R ←− R[B0(G)] ←− R[B1(G)] ←− . . . (7)

Lemma 4.5 Let G be an étale groupoid.
(i) For each n ≥ 0, the projection pn : Bn(G) → Gn, sending

(g1, . . . , gn, h) to (g1, . . . , gn), induces a weak equivalence of étale group-
oids

pn : Bn(G) � G −→ Gn

compatible with the simplicial structures (here Gn is viewed as the unit
groupoid).
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(ii) Under this equivalence, the projection prn : Bn � G → G cor-
responds to λn, in the sense that for any G-sheaf A there is a natural
isomorphism

p∗nλ∗
n(A) = pr∗n(A) .

(iii) For each G-sheaf A there is a natural isomorphism

HomG(Bn(G), A) = Γ(Gn, A(n))

(recall that A(n) denotes the pull-back of A along λn).
(iv) The augmented chain complex of G-sheaves

0 ←− R ←− R[B0(G)] ←− R[B1(G)] ←− . . .

is exact.

Proof We leave the easy proofs of (i) and (ii) to the reader. The isomor-
phism in (iii) is the map

θ : HomG(Bn(G), A) −→ Γ(Gn, A(n))

sending a morphism α : Bn(G) → A of G-sheaves to the section θ(α),
defined for any point (g1, . . . , gn) in Gn by

θ(α)(g1, . . . , gn) = α(g1, . . . , gn, 1s(gn )) .

Finally, for (iv), observe that the stalk at a point y ∈ G0 of the simplicial
G-sheaf B•(G) is the simplicial set (y/G)•, the nerve of the comma
category y/G. Like the nerve of any category with an initial object,
the simplicial set (y/G)• is contractible. It follows that the complex
R[B•(G)] is acyclic. Indeed, its stalk at y is the complex R[B•(G)y] =
R[(y/G)•] which computes the homology H∗(y/G,R). (An explicit chain
homotopy ξ : R[Bn(G)y] → R[Bn+1(G)y] is defined on generators by
ξ(g1, . . . , gn, h) = (g1, . . . , gn, h, 1s(h)).)

Proposition 4.6 Let G be an étale groupoid. For any bounded below
complex of G-sheaves A there is a spectral sequence

Ep,q
1 = Hq(Gp, A(p)) ⇒ Hp+q(G,A)

natural in A.

Proof Let A → I be a quasi-isomorphism into a complex of injectives,
and consider the double complex

Γ(Gp, I
q
(p)) .
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For a fixed q, this is a complex of the form (6), and there are canonical
isomorphisms

Γ(Gp, I
q
(p)) = HomG(Bp(G), Iq) = HomShR (G)(R[Bp(G)], Iq) ,

the first by Lemma 4.5 (iii) and the second by the adjunction (Section
3.4). Since R[B•(G)] is acyclic (Lemma 4.5 (iv)) and Iq is injective, we
find that Hp(Γ(G•, I

q
(•))) = 0 for p > 0 and

H0(Γ(G•, I
q
(•))) = HomShR (G)(R, Iq) = Γinv(G, Iq) .

This shows that the total complex of Γ(Gp, I
q
(p)) computes H∗(G,A).

On the other hand, for fixed p, the map of complexes A(p) → I(p) is an
injective resolution of the complex A(p), by Lemma 4.4 (ii) and Lemma
4.5 (ii). So

Hq(Γ(Gp, I(p))) = Hq(Gp, A(p)) ,

giving the E1-term as described in the proposition.

Corollary 4.7 Let G be an étale groupoid, and let B be a G-sheaf. Let

0 −→ B −→ A0 −→ A1 −→ . . .

be a resolution by sheaves Aq with the property that Hq(Gp, A(p)) = 0
for each fixed p, and each q > 0. Then H∗(G,B) is isomorphic to the
cohomology of the double complex Γ(Gp, A

q
(p)).

Proof This follows from Proposition 4.6. Alternatively, one inspects the
double complex directly.

Examples 4.8 (1) For a G-sheaf B, any injective resolution 0 → B →
I0 → I1 → . . . in ShR(G) satisfies the conditions of Corollary 4.7. In-
deed, as observed in the proof of Proposition 4.6, each Iq

(p) is an injective
sheaf on Gp.

(2) (Godement resolution, see [60, p. 285]) Let X be a space, let Xδ

be the same set with discrete topology, and let p : Xδ → X be the
evident (continuous) identity map. The Godement sheaf associated to a
sheaf B on X is the sheaf

G(B) = p∗p
∗(B) .

A section of G(B) over U ⊂ X is an arbitrary (not necessarily continu-
ous) section from U into the étale space of B. The sheaf G(B) is flabby,
in particular Hn(X,G(B)) = 0 for n > 0. The Godement resolution is
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of the form

B −→ G0(B) −→ G1(B) −→ . . .

where G0(B) = G(B) and Gn+1(B) = G(Gn(B)). The construction of the
Godement sheaf is stable under pull-back along local homeomorphism.
More precisely, if f : Y → X is a local homeomorphism then f∗G(B) =
G(f∗B). In particular, if G is an étale groupoid and B is a G-sheaf, the
Godement resolution G•(B) of B as a sheaf on G0 carries a natural G-
action, and for the pull-back B(n) to Gn we have G•(B(n)) = G•(B)(n).
Thus, as a special case of Lemma 4.5, the double complex

Γ(Gp,Gq(B)(p))

computes the cohomology H∗(G,B) of G.
(3) Suppose G is a Hausdorff étale groupoid, and R = R is the field

of reals. For any G-sheaf B there is a canonical de Rham resolution

0 −→ B −→ Ω0 ⊗B −→ Ω1 ⊗B −→ . . .

by differential forms on G0. For each of the G-sheaves Ωq ⊗ B, the
pull-back (Ωq ⊗ B)(p) = Ωq ⊗ B(p) is the sheaf of differential forms
on the space G(p) with coefficients in B(p). This is a fine sheaf, hence
Hn(Gp,Ωq ⊗B(p)) = 0 for n > 0. So the double complex

Γ(Gp,Ωq ⊗B(p))

computes H∗(G,B).

Remark. The assumption that G is Hausdorff is essential here. In fact
Hn(X,Ωq) need not be zero for n > 0 in case of a non-Hausdorff manifold
X.

We conclude this section with another consequence of Lemmas 4.4
and 4.5.

Proposition 4.9 (Etale base change) Let φ : H → G be a homo-
morphism between Lie groupoids, and assume G is étale. Then for the
fibered product square (Section 2.4)

G0/φ

ψ

��

v �� H

φ

��

G0
u �� G

the following hold:
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(i) For any H-sheaf E (of sets) the canonical map

u∗φ∗(E) −→ ψ∗v
∗(E)

is an isomorphism.
(ii)For any bounded below complex A of H-sheaves, the canonical map

u∗Rφ∗(A) −→ Rψ∗(v∗(A))

is an isomorphism.

Proof Under the Morita equivalence (Lemma 4.5 (i) and (ii)), the dia-
gram corresponds to

φ∗(B0(G)) � H

φ̃

��

pr′
�� H

φ

��

B0(G) � G
pr

�� G

So (i) is equivalent to the assertion that there is a natural isomorphism
pr∗φ∗ → φ̃∗pr′∗ for this square. By taking left adjoints of all functors
involved, this is equivalent to the canonical map

pr′!φ̃
∗ −→ φ∗pr!

being an isomorphism, and this is indeed the case by Lemma 4.4 (iii).
This proves (i). The property (ii) now follows because, again by Lemma
4.4, the exact functor v∗ (or equivalently pr′∗) preserves injectives.

4.3 Proper maps and orbifolds

We begin by reviewing some well-known facts about sheaves on para-
compact Hausdorff spaces (cf. [19, 32]). First of all, recall that a sheaf
B of abelian groups on a paracompact Hausdorff space X is called soft
if for any inclusion i : F → X of a closed subspace, the restriction map
Γ(X,B) → Γ(F, i∗B) is surjective. In other words, B is soft if any sec-
tion over a closed subspace extends to the whole space. Soft sheaves are
acyclic, i.e. Hn(X,B) = 0 for any n > 0 if B is soft. In particular, for
an arbitrary sheaf A, one can compute H∗(X,A) as the cohomology of
Γ(X,B), where 0 → A → B0 → B1 → . . . is a soft resolution. Related
to this, any quasi-isomorphism B → C between bounded below com-
plexes of soft sheaves induces a quasi-isomorphism Γ(X,B) → Γ(X,C).
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Any injective sheaf is soft. If X is a smooth manifold, the sheaf Ωn of
differential n-forms on X is soft.

Next, recall that a map f : Y → X between Hausdorff spaces is
proper if f is closed and each fiber of f is compact. For locally compact
spaces, this is equivalent to the requirement that the inverse image of
any compact subset of X is compact. Propriety is a local property, in the
sense that f : Y → X is proper as soon as each x ∈ X possesses an open
neighbourhood U for which f restricts to a proper map f−1(U) → U .
Also, propriety is stable under pull-backs, i.e. in a pull-back square

Y ′ b ��

f ′

��

Y

f

��

X ′ a �� X

(8)

the map f ′ is proper whenever f is. We also recall the following ‘proper
base-change formulas’:

Proposition 4.10 Consider a pull-back square (8) with f proper.
(i) For any sheaf of sets E on Y , the canonical map

a∗f∗(E) −→ f ′
∗b

∗(E)

is an isomorphism.
(ii) For any bounded below complex A of sheaves of R-modules on Y ,

the canonical map

a∗Rf∗(A) −→ Rf ′
∗(b

∗A)

is a quasi-isomorphism.

Proof See [19, 32].

Now consider a homomorphism between étale groupoids φ : H → G,
and the following (weak) fibered products:

x/φ

��

x̃ �� G0/φ

φ̃

��

v �� H

φ

��

1
x �� G0

u �� G

(9)

The comma groupoids G0/φ and x/φ are again étale. Recall that the
n-th space (G0/φ)n in the nerve of G0/φ has as points the strings

(h1, . . . , hn, g)
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where (h1, . . . , hn) ∈ Hn and g : x → φ(s(hn)). Let us write φ̃n :
(G0/φ)n → G0 for the map which sends such a string to x. We observe
the following consequence of ‘proper base-change’:

Proposition 4.11 Let φ : H → G be a homomorphism of étale group-
oids. Suppose that H and G are Hausdorff, and that the map φ̃n :
(G0/φ)n → G0 is proper for each n ≥ 0. Then for any bounded below
complex A of H-sheaves, and any point x ∈ G0,

(Rnφ∗(A))x = Hn(x/φ,A)

(here on the right A stands for its restriction to x/φ, i.e. for x̃∗v∗(A)
with x̃ and v as in (8)).

Proof Firstly, by étale base change (as in Section 4.2), Rφ∗(A)x =
Rφ̃∗(v∗(A))x. Let v∗(A) → I be an injective resolution of (G0/φ)-
sheaves. Then, as in the proof of Corollary 4.7, (Rφ̃∗(v∗(A)))x is quasi-
isomorphic to the total complex of the double complex

(φ̃n)∗(Im
(n))x ,

where Im
(n) denotes the pull-back of Im to (G0/φ)n. (Use that

R[B•(H)] is an exact complex of H-sheaves (Lemma 4.5 (iv)) and
ψ∗(Hom(v∗R[Bn(H)], Im)) = (φ̃n)∗(Im

(n)).) Since φ̃n is proper, we

have (φ̃n)∗(Im
(n))x = Γ((x/φ)n, x̃∗(Im

(n))). Since H is Hausdorff, each
space (x/φ)n is also Hausdorff, and Im restricts to a soft sheaf
x̃∗(Im

(n)) on (x/φ)n. Thus, by Corollary 4.7 again, the double complex
Γ((x/φ)n, x̃∗(Im

(n))) computes the cohomology H∗(x/φ0, A).

This proposition does not make use of any smooth structure, and
applies to topological étale groupoids generally, provided the relevant
spaces are paracompact Hausdorff. In particular, the following assertion
is essentially a special case of the previous proposition:

Corollary 4.12 Let G be a proper étale groupoid, let |G| be its orbit
space, and write q : G → |G| for the associated projection. Then for any
bounded below complex A of G-sheaves, there is a canonical isomorphism

(Rnq∗(A))q(x) = Hn(Gx, Ax)

for any point x ∈ G0 with isotropy group Gx.

Proof The statement is local in |G|. Write qi : Gi → |G| (for i = 0, 1, . . .),
and consider a point ξ ∈ |G|. Choose x ∈ G0 with q0(x) = ξ. By [48, p.
142], there is a neighbourhood U of ξ such that the groupoid q−1(U) =
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G|q−1
0 (U) is Morita equivalent to the semi-direct product

Ux � Gx

where Ux is a neighbourhood of x and the isotropy group Gx acts on
Ux, in such a way that q induces a homeomorphism Ux/Gx → U . Thus,
it suffices to prove the corollary in the special case where G is U � Gx.
But now the statement follows from the previous proposition (by taking
U � Gx for H and the unit groupoid of the space U/Gx for G). Indeed,
in the diagram

. . . U ×G2
x

��
��
�� U ×Gx

��
�� U

q
�� U/Gx

all maps are proper, and ξ/q = q−1(ξ) is a finite groupoid equivalent to
the isotropy group Gx.

Corollary 4.13 Let G be a proper étale groupoid, and suppose the order
#Gx of each isotropy group Gx is a unit in the ring R. Then for any
G-sheaf A of R-modules we have

H∗(G,A) = H∗(|G|, q∗(A)) .

Let Q be a paracompact Hausdorff space. Recall that an orbifold
structure on Q (see Remark 2.6 (4)) is given in one of several equivalent
ways by a proper effective groupoid G such that |G| = Q. We also refer
to the map q : G → Q as an orbifold structure on Q. For any G-sheaf
A, the cohomology H∗(G,A) is called the orbifold cohomology of Q with
coefficients in A. By the Leray spectral sequence for the map q, this
cohomology is built up out of the cohomology of the underlying space
Q and that of the isotropy groups Gx of the orbifold:

Ep,s
2 = Hp(Q,Rsq∗(A)) ⇒ Hp+s(G,A) ,

where Rsq∗ is described explicitly by Corollary 4.12. Suppose now that
we work with sheaves of modules over the field R of reals. Recall that any
G-sheaf B of R-modules has a resolution 0 → B → Ω0⊗B → Ω1⊗B . . .

by the G-sheaves of differential forms. The following result is a version
of the de Rham theorem for orbifolds:

Corollary 4.14 Let q : G → Q be an orbifold structure on Q. For any
sheaf B of R-modules on Q, there is a canonical isomorphism

Hn(Q,B) = Hn(Γinv(G,Ω⊗ q∗(B))) i = 0, 1, . . .
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Proof First observe that q∗(Ωn ⊗ q∗(B)) = q∗(Ωn)⊗B, and hence

Γinv(G,Ωn × q∗(B)) = Γ(Q, q∗(Ωn)⊗B) .

Next, q∗ is exact by Corollary 4.12 (since we work over the reals), so
q∗(Ω) ⊗ B is a resolution of B. It thus suffices to show for each n that
q∗(Ωn) ⊗ B is a soft sheaf on Q. This is a local property, so it suffices
to prove this where Q = U/Gx and G = U � Gx as in the proof of
Corollary 4.12. The details for this are standard: If F ⊂ U/Gx is closed
and σ ∈ Γ(F, q∗(Ωn)⊗B), then σ pulls back to a Gx-equivariant section
of Ωn ⊗ q∗(B) on q−1(F ) ⊂ U . Since Ωn is a fine sheaf, Ωn ⊗ q∗(B) is
soft [19], so this section extends to a section σ̃ on all of U . By averaging
over Gx, we can modify σ̃ into a Gx-equivariant section σ̄. Then

σ̄ ∈ Γinv(U � Gx,Ωn ⊗ q∗(B)) = Γ(U/Gx, q∗(Ωn)⊗B)

is the required extension of σ.

To conclude this section, we prove the analogue of the change of base
formula (Proposition 4.10) for proper étale groupoids (and hence, in
particular, for orbifolds).

Let φ : H → G be a homomorphism from a proper Lie groupoid
H into a Hausdorff étale groupoid G. Then we say that φ is proper if
for each compact subset K of G0, the orbit space |K/φ| of the comma
groupoid K/φ is compact. Recall from the diagram (9) that the square

G0/φ

φ̃

��

v �� H

φ

��

G0
u �� G

is a weak fibered product. Then since H is proper and G is Hausdorff,
G0/φ is a locally compact Hausdorff space, and φ is a proper map if
and only if the map |G0/φ| → G0 induces by φ̃ is a proper map of
spaces in the usual sense. We note also that this definition of proper
homomorphism is invariant under weak equivalences of groupoids.

Lemma 4.15 In a weak pull-back square

P

ψ

��

�� H

φ

��

K �� G

the map ψ is proper whenever φ is.
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Proof The induced square

K0/ψ

��

�� G0/φ

��

K0
�� G0

is again a fibered product (up to weak equivalence). This gives an ordi-
nary fibered product of spaces

|K0/ψ|

|ψ|
��

�� |G0/φ|

|φ|
��

K0
�� G0

so |ψ| is proper whenever |φ| is.

Proposition 4.16 (Proper base change) For a weak pull-back
square

P

ψ

��

b �� H

φ

��

K
a �� G

of proper étale groupoids, and for any bounded below complex A of H-
sheaves, the canonical map

a∗Rφ∗(A) −→ Rψ∗(b∗(A)) (10)

is a quasi-isomorphism.

Proof Consider the rectangle

K0/ψ
v ��

ψ̃

��

P

ψ

��

b �� H

φ

��

K0
u �� K

a �� G

It is enough to prove that u∗ maps (10) to a quasi-isomorphism. Thus,
by étale base change for the left-hand square, it is enough to prove the
base change formula for the composed rectangle, i.e. that

(au)∗Rφ∗(A) −→ Rψ̃∗((bv)∗(A))

is a quasi-isomorphism. This composed rectangle is the same as the
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composed rectangle of the fibered products

K0/ψ ��

ψ̃

��

G0/φ

φ̃

��

�� H

φ

��

K0
�� G0

u �� G

(11)

so by étale base change for the right-hand square, it remains to show
the base change formula for the left-hand square of (11). This square
decomposes into two,

K0/ψ ��

��

G0/φ

��

|K0/ψ| �� |G0/φ|

and

|K0/ψ| ��

��

|G0/φ|

��

K0
�� G0

the first of which satisfies base change by Corollary 4.12 and the second
of which does by Proposition 4.10.

4.4 A comparison theorem for foliations

As an application of étale base change, we will present a theorem which
compares the cohomology of the leaf space of a foliation with that of
the underlying manifold. Before stating this theorem, we recall that a
topological space F is called n-acyclic if it is connected and Hi(F,A) = 0
for any abelian group A and any 0 < i ≤ n. (This is closely related to
the stronger notion of n-connectedness: a space F is called n-connected
if πi(F, x) = 0 for 0 ≤ i ≤ n and any base point x ∈ F . For n > 1, a
simply connected space F is n-connected if and only if it is n-acyclic.) A
map f : Y → X is said to be n-acyclic if each of its fibers is an n-acyclic
space.

Now consider a foliation (M,F) and its holonomy groupoid
Hol(M,F). For any Hol(M,F)-sheaf A, the inclusion of the units u :
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M → Hol(M,F) induces a map

u∗ : Hi(Hol(M,F), A) −→ Hi(M,u∗(A))

which should be thought as the pull-back along the quotient map M →
M/F from the manifold to the leaf space.

Theorem 4.17 Let (M,F) be a foliation, and suppose that for each leaf
L the holonomy cover L̃ is an n-acyclic space. Then for each Hol(M,F)-
sheaf A the map

Hi(Hol(M,F), A) −→ Hi(M,u∗(A))

is an isomorphism for 0 < i ≤ n. Similarly, the map

Hi(Mon(M,F), A) −→ Hi(M,u∗(A))

is an isomorphism for 0 < i ≤ n if each leaf L has an n-acyclic universal
cover.

In fact, this result is a special case of the following theorem:

Theorem 4.18 Let G be an étale groupoid and let p : M → G0 be a left
G-space. Suppose that the map p is an n-acyclic submersion. Then the
homomorphism p : G � M → G of étale groupoids has the property that
for any G-sheaf A,

R0p∗(p∗A) = A

and

Rip∗(p∗A) = 0 0 < i ≤ n .

In particular, for any such A,

p∗ : Hi(G,A) −→ Hi(G � M,p∗A)

is an isomorphism for 0 ≤ i ≤ n.

Remark. In this theorem, we do not need M to be Hausdorff, but we
need to assume that the fibers of p are Hausdorff.

Proof (Proof of Theorem 4.17 from Theorem 4.18) We only discuss the
case of the holonomy groupoid. The statement for the monodromy
groupoid is proved in the same way. Let j : T → M be a complete
transversal, with its associated weak equivalence j : HolT (M,F) →
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Hol(M,F), and construct the weak fibered product

P

��

k �� M

u

��

HolT (M,F)
j

�� Hol(M,F)

Thus the manifold P0 of objects of P consists of triples (t, α,m) where
t ∈ T , m ∈ M and α is an arrow from m to t in Hol(M,F). Arrows
β : (t, α,m) → (t′, α′,m′) in P are arrows β : t → t′ such that βα = α′

(hence in particular m = m′). Thus P is the semi-direct product

P = HolT (M,F) � P0 .

Moreover since j is a weak equivalence, so is k. So in the following
commutative square the horizontal maps are isomorphisms:

Hi(P, k∗u∗A) Hi(M,u∗A)



Hi(HolT (M,F), j∗A)

��

Hi(Hol(M,F), A)



��

Since the fiber of P0 → T over t is precisely the holonomy cover of the
leaf through t, Theorem 4.17 follows by applying Theorem 4.18 to the
HolT (M,F)-space P0.

Proof (Proof of Theorem 4.18) Let us first observe that the last ‘in par-
ticular’ part follows from the first by general homological algebra. In-
deed, if p∗A → I0 → I1 → . . . is an injective resolution of G�M -sheaves,
then the first part states that

0 −→ A = p∗p
∗A −→ p∗I

0 −→ p∗I
1 −→ . . .

is exact up to p∗I
n. Thus, if we extend this sequence on the right by

an injective resolution of Ker(p∗(In → In+1)) = p∗Ker(In → In+1), we
obtain an injective resolution of A by G-sheaves of the form

0 −→ A −→ p∗I
0 −→ . . . −→ p∗I

n−1 −→ Jn −→ Jn+1 −→ . . .

and with Ker(Jn → Jn+1) = Ker(p∗(In → In+1)). Thus for 0 ≤ i ≤ n

we find that Hi(G,A) = Hi(Γinv(G, p∗I)) = Hi(Γinv(G � M, I)) =
Hi(G � M,p∗A).

It thus suffices to prove the first assertion of the theorem. To this end,
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consider the square

M

p0

��

v �� G � M

p

��

G0
u �� G

where we have written p0 : M → G0 to distinguish it from the groupoid
homomorphism p : G � M → G, and v : M → G � M for the inclusion
of the units. This square is a weak fibered product up to Morita equiv-
alence, because G0/(G � M) is weakly equivalent to the manifold M

(viewed as unit groupoid). Thus, by étale base change, there is a canon-
ical quasi-isomorphism u∗Rp∗ = R(p0)∗v∗. Since a map of complexes of
G-sheaves is a quasi-isomorphism if and only if it is mapped by u∗ to a
quasi-isomorphism of complexes of sheaves on G0, we reduced the proof
to the case of ordinary spaces, where it is known, and which we state in
the following lemma.

Lemma 4.19 Let p : M → G0 be an n-acyclic submersion between
smooth manifolds. Then for any sheaf A on G0 we have

R0p∗(p∗A) = A

and

Rip∗(p∗A) = 0 0 < i ≤ n .

Remark. Recall that we do not assume that M is Hausdorff, although
G0 and the fibers of p are assumed to be Hausdorff.

Proof (cf. [1, 4]) Consider the Godement resolution

A −→ G0(A) −→ G1(A) −→ . . .

of A. This gives a resolution

p∗A −→ p∗G0(A) −→ p∗G1(A) −→ . . .

and by an argument exactly analogous to the proof of the first part of
Theorem 4.18, it suffices to prove that Rip∗(p∗(Gk(A)) = 0 for 0 < i ≤ n

and for each k. Since Gk(A) = G(Gk−1(A)) and A is arbitrary, we are
thus left with proving that for any ‘Godement sheaf’ G(A) on G0,

Rip∗(p∗(G(A)) = 0 0 < i ≤ n .
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To this end, notice that G(A) is an infinite product of sheaves,

G(A) =
∏

x∈G0

(ix)∗(Ax)

where ix : 1 → G0 is the inclusion of the point x ∈ G0. The functor
p∗ : Sh(G0) → Sh(M) preserves such products because it has a left
adjoint (the functor sending a sheaf E → M to the sheaf of fiber-wise
connected components of the composition E → M → G0), so

p∗G(A) =
∏

x∈G0

p∗(ix)∗(Ax) . (12)

Since the closed inclusions in the pull-back square

f−1(x)

jx

��

px �� 1

ix

��

M
p

�� G0

are proper maps, proper base change (Proposition 4.10) gives that
p∗(ix)∗ = (jx)∗p∗x. So we can rewrite (12) as

p∗G(A) =
∏

x∈G0

(jx)∗p∗x(Ax) .

Now choose for any x ∈ G0 a resolution

0 −→ p∗x(Ax) −→ I0
x −→ I1

x −→ . . .

of the constant sheaf p∗x(Ax) by injective sheaves on the fiber f−1(x).
Since jx is the inclusion of a closed subspace f−1(x) ⊂ M , the functor
(jx)∗ is exact and preserves injectives, so

0 −→ (jx)∗p∗x(Ax) −→ (jx)∗I0
x −→ (jx)∗I1

x −→ . . .

is still an injective resolution. Taking the product over all x ∈ G0 and
using the isomorphism (12), we obtain an injective resolution

0 −→ p∗G(A) −→
∏

x∈G0

(jx)∗I0
x −→

∏
x∈G0

(jx)∗I1
x −→ . . .

Now apply p∗ to this, and notice that

p∗(
∏

x∈G0

(jx)∗Ik
x) =

∏
x∈G0

p∗(jx)∗Ik
x =

∏
x∈G0

(ix)∗(px)∗Ik
x .

The stalk of this complex
∏

x∈G0
(ix)∗(px)∗Ix at a point x ∈ G0 is

(px)∗Ix, which computes H∗(f−1(x), Ax) hence is acyclic up to n. This
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shows that p∗ maps the resolution of p∗G(A) above to a complex which
is exact up to n, so Rip∗(p∗G(A)) = 0 for 0 < i ≤ n.

4.5 The embedding category of an étale groupoid

We have seen that the cohomology of (étale) Lie groupoids generalizes
the sheaf cohomology of manifolds as well as the cohomology of discrete
groups. There is another generalization of group cohomology which in-
volves no topology or smooth structure, and is purely combinatorial in
nature, the cohomology of small categories. The aim of this section is,
first to recall this cohomology, and then to show how the cohomology
of an étale groupoid can be interpreted in terms of an associated small
category. This result gives rise, among other things, to a Čech-de Rham
model of the cohomology of étale groupoids, and in particular of leaf
spaces of foliations.

Let C be a small category. This means that the objects and arrows of
C form (small) sets C0 and C1; these sets are not assumed to have any
further structure. Exactly as for groupoids, we can form an associated
simplicial set

C0 C1




 C2 . . .










called the nerve of C. The set Cn is the set of strings of composable
arrows

c0
f1←− c1

f2←− . . .
fn←− cn

in the category C, and the face maps di : Cn → Cn−1 are defined as in
Section 4.2, i.e. ‘di omits ci’. In particular, d0, d1 : C1 → C0 are the source
s and the target map t of C.

For a ring R, a presheaf of R-modules on C is a contravariant functor A

from C into the category of R-modules; we shall use any of the notations
A(f)(a) = a · f = f∗(a) for an arrow f in C and a ∈ A(t(f)). For
such a functor A, one can form a cosimplicial abelian group C•(C, A),
by defining

Cn(C, A) =
∏

(f1,...,fn )∈Cn

A(s(fn)) ,

where the product ranges over all strings in Cn. For i = 0, 1, . . . , n, the
face map di : Cn → Cn−1 induces a map δi : Cn−1(C, A) → Cn(C, A)
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defined for f = (f1, . . . , fn) by

δi(a)(f) =
{

a(di(f)) ; 0 ≤ i < n

a(dn(f)) · fn ; i = n

One obtains a cochain complex (also denoted) C•(C, A) by defining the
differential δ : Cn−1(C, A) → Cn(C, A) by δ =

∑
i(−1)iδi, as usual. The

cohomology of this complex is called the cohomology of the category C
with coefficients in the presheaf A, and denoted

H∗(C, A) .

Similarly, if A is a bounded below complex of presheaves, one defines a
double complex Cp,q = Cp(C, Aq), and the cohomology of the associated
total complex is the (hyper) cohomology of C with coefficients in the
complex A, denoted again by H∗(C, A).

This cohomology of small categories has good general properties
which are well-known and which we will not discuss. We observe
only that, by the standard properties of double complexes, a quasi-
isomorphism A → B of bounded below complexes of presheaves (that
is, a map with the property that A(c) → B(c) is a quasi-isomorphism
for any object c) induces an isomorphism H∗(C, A) → H∗(C, B).

Now let G be an étale groupoid, and let U be a basis of open sets in
G0. Typically, U will consist of small contractible ‘balls’. With this, we
can construct a small category

EmbU (G) ,

called the embedding category of G (with respect to the basis U). The
objects of EmbU (G) are the members of U . For U, V ∈ U , an arrow
U → V in EmbU (G) is a bisection (cf. [48, p. 115]) σ : U → G1

of G for which t(σ(U)) ⊂ V . One can also think of such an arrow
σ : U → V in EmbU (G) as a particular smooth family {σ(x)} of ar-
rows in G parametrized by x ∈ U . With this in mind, it is clear how the
multiplication in G induces a composition of arrows in EmbU (G). Ex-
plicitly, for arrows σ : U → V and ρ : V → W in EmbU (G), the bisection
ρσ : U → W is given by

ρσ(x) = ρ(t(σ(x)))σ(x) .

Example 4.20 Let F be a foliation on a manifold M , and HolT (M,F)
the étale holonomy groupoid of (M,F) associated to a complete
transversal T . Let U be a basis for T . An arrow σ : U → V in
EmbU (HolT (M,F)) is locally represented by a smooth family of paths
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{αx} parametrized by x ∈ U , such that each αx is a path from x to
f(x) ∈ V inside a leaf of F , and such that the map f : U → V given in
this way is an embedding.

Let us return to the general case of an étale groupoid G and a ba-
sis U for G0. Any G-sheaf A induces a presheaf Γ(A) on the category
EmbU (G), defined for U ∈ U by Γ(A)(U) = Γ(U,A), the set of sections
of A (as a sheaf on G0) over U . This is indeed a contravariant functor,
because each arrow σ : U → V in EmbU (G) induces a map

σ∗ : Γ(V,A) −→ Γ(U,A)

defined for any α ∈ Γ(V,A) by

σ∗(α)(x) = α(t(σ(x))) · σ(x) .

Thus we obtain a functor

Γ: ShR(G) −→ {presheaves of R-modules on EmbU (G)} ,

for any ring R.
Before stating the main theorem of this section, we need one more

definition. A G-sheaf A is said to be U-acyclic if Hn(U,A) = 0 for any
n > 0 and any open U ∈ U . For example, any injective G-sheaf A is
U-acyclic, because A is still injective when viewed as a sheaf on G0 by
Lemma 4.4 (ii) and Lemma 4.5 (i). Also, the G-sheaf Ωm of differential
m-forms is U-acyclic for each m ≥ 0.

Theorem 4.21 Let G be an étale groupoid and let U be a basis of open
sets on G0. Then for any bounded below complex A of U-acyclic G-
sheaves, there is a natural isomorphism

H∗(G,A) = H∗(EmbU (G),Γ(A)) .

Before we prove the theorem, we mention a few special cases.

Corollary 4.22 Let G be an étale groupoid, and let U be a basis of
contractible open sets on G0. Then for any locally constant sheaf A we
have

H∗(G,A) = H∗(EmbU (G),Γ(A)) .

Remark. Observe that in this case the presheaf Γ(A) is also locally
constant, in the sense that σ∗ : Γ(V,A) → Γ(U,A) is an isomorphism for
each arrow σ : U → V in EmbU (G).
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Corollary 4.23 Let G be an étale groupoid, and let U be a basis of open
sets on G0. Let A be a sheaf of R-modules. Then

H∗(G,A) = H∗(EmbU (G),Γ(Ω⊗A)) .

Remark. This corollary states that, when working over the reals,
H∗(G,A) can be computed by some sort of ‘Čech-de Rham double com-
plex’. In bidegree p, q this complex is∏

U0←U1←...←Up

Ωq(Up, A) (13)

where the product is over strings of arrows in the embedding category
and Ωq(Up, A) is the vector space of q-forms on Up with coefficients in
A. Therefore we refer to this last corollary as the Čech-de Rham theorem
for étale groupoids.

Example 4.24 Let (M,F) be a foliated manifold, and let U be a basis
of open sets on a complete transversal T , as in Example 4.20 above.
Then for any Hol(M,F)-sheaf A, the Čech-de Rham double complex
(13) computes H∗(Hol(M,F), A). This follows by the invariance of co-
homology under the Morita equivalence Hol(M,F) ∼ HolT (M,F) and
the corollary applied to HolT (M,F).

Proof (Proof of Theorem 4.21) Let A → I be a resolution of A by a
bounded below complex of injective G-sheaves. Then, by Corollary 4.7,
H∗(G,A) is computed by the double complex

Γ(Gp, I
r) .

Also, since each Ar is U-acyclic, Γ(U,A) → Γ(U, I) is a quasi-
isomorphism for each U ∈ U , so H∗(EmbU (G),Γ(A)) is computed by
the double complex

Cq(EmbU (G),Γ(Ir)) =
∏

U0←U1←...←Up

Γ(Uq, I
r) .

We will prove the theorem by constructing a suitable complex C(I) and
explicit quasi-isomorphisms of total complexes

Γ(G•, I
•) −→ C(I) ←− C•(EmbU (G),Γ(I•)) .

For this consider the bisimplicial space Sp,q whose p, q-simplices are of
the form

U0
σ1←− U1

σ2←− . . .
σq←− Uq

g←− x0
g1←− x1

g2←− . . .
gp←− xp (14)
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where σ1, . . . , σq are arrows in EmbU (G) and g, g1, . . . , gp are arrows in
the groupoid G, the notation Uq

g← x0 indicating that the target of g lies
in Uq. The topology of Sp,q is that of the disjoint sum over all strings
(σ1, . . . , σq) of the fibered products Uq ×G0 Gp. Each G-sheaf B induces
a sheaf Bp,q on Sp,q, by pulling back along the map Sp,q → G0 sending
a point (14) to xp. Write

Cp,q(B) = Γ(Sp,q, B
p,q) .

Then the simplicial face maps of Sp,q make Cp,q(B) into a double com-
plex. There are natural augmentations

Γ(Gp, λ
∗
p(B)) −→ Cp,q(B) ←− Cq(EmbU (G),Γ(B)) (15)

(recall that λ∗
p(B) is the sheaf on Gp with stalk Bxp at x0 ← . . . ← xp). It

is now enough to prove that for any injective G-sheaf B, each of the maps
in (15) is a quasi-isomorphism into the total complex of Cp,q(B). Indeed,
when applied to B = Ir for each r, we then obtain quasi-isomorphisms

Γ(Gs, I
r) −→

⊕
p+q=s

Cp,q(Ir) ←− Cs(EmbU (G),Γ(Ir))

for each fixed r, and hence quasi-isomorphisms of total complexes, which
proves the theorem.

So consider the maps in (15) for an injective G-sheaf B. For a fixed q,
the complex C•,q(B) is a product of bar complexes of the kind considered
in Section 4.2, viz. for each string U0 ← . . . ← Uq the bar complex of
the étale comma groupoid G/Uq, with coefficients in the pull-back of
the G-sheaf B along the evident homomorphism G/Uq → G. Since this
groupoid G/Uq is Morita equivalent to the manifold Uq, this bar complex
computes the cohomology H∗(Uq, B), and this vanishes in the positive
degrees because B is injective. Thus, for each q the map

Cq(EmbU (G),Γ(B)) −→ C•,q(B)

is a quasi-isomorphism. It follows that the right-hand map in (15) is a
quasi-isomorphism into the total complex of Cp,q(B).

To conclude the proof, we consider the left-hand map in (15), and
show that

Γ(Gp, λ
∗
p(B)) −→ Cp,•(B)

is a quasi-isomorphism for each fixed p. To this end, write prp,q : Sp,q →
Gp for the projection of a point (14) to the string x0 ← . . . ← xp. Then

Cp,q(B) = Γ(Gp, (prp,q)∗(B
p,q)) .
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Since λ∗(B) and (prp,q)∗(Bp,q) are all injective sheaves on Gp, we need
to show that

0 −→ λ∗
p(B) −→ (prp,0)∗(B

p,q) −→ (prp,1)∗(B
p,q) −→ . . . (16)

is a resolution of sheaves on Gp. At this point, it is convenient to change
the notation. Let

φp : Gp −→ G0 ρp,q : Sp,q −→ G0

be maps sending x0 ← . . . ← xp to x0, and (14) to x0, respectively. Then
by the G-action on B, the complex (16) is isomorphic to

0 −→ φ∗
p(B) −→ (prp,0)∗ρ

∗
p,0(B) −→ (prp,1)∗ρ

∗
p,1(B) −→ . . . (17)

which we now show to be exact. The stalk of (prp,q)∗ρ∗p,q(B) at x0 ←
. . . ← xp is a colimit over all neighbourhoods U of x0,

lim
→ x0∈U

∏
U0←...←Uq ←U

Γ(U,B) .

For a fixed U , the complex inside this colimit computes the cohomology
of the comma category U/EmbU (G) with constant coefficients. Since this
comma category is contractible, its cohomology is trivial, and the map

Γ(U,B) −→ C•(U/EmbU (G),Γ(U,B))

is a quasi-isomorphism. Taking the colimit over all neighbourhoods U ∈
U of x0, we obtain a quasi-isomorphism

Bx0 −→ ((prp,•)∗ρ
∗
p,•(B))x0

This shows that (17) is exact, and completes the proof of the theo-
rem.

Remark. Let C be a subcategory of EmbU (G). We say that C generates
EmbU (G) if, for any arrow σ : U → V in EmbU (G) and any point x ∈ U

there exists an open neighbourhood Ux ⊂ U of x and an open set W ⊂ V

with t(σ(Ux) ⊂ W such that the restriction σ : Ux → W belongs to C.
For example, let G = HolT (M,F) and U a basis of open sets on T

as in Example 4.20, and let C be the subcategory with the same objects
as EmbU (G); arrows σ : U → V of C are arrows which are represented
by a family of paths {αx} parametrized by x ∈ U , such that each αx is
a path from x to f(x) ∈ V inside a leaf of F , and such that the map
f : U → V given in this way is an embedding (see Example 4.20). In
other words, arrows in C are globally represented by paths, where an
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arrow in EmbU (G) is only locally so represented. This C is a generating
subcategory.

The proof of Theorem 4.21 applies to any such generating subcate-
gory, and shows that

H∗(G,A) = H∗(C,Γ(A))

for any A, as in Theorem 4.21.

4.6 Degree one cohomology and the fundamental
group

In the previous section, we have shown that the cohomology of an étale
groupoid G can be described in terms of a small category EmbU (G).
In this section we will relate the covering spaces and the fundamental
group of G to the small category EmbU (G).

Consider, for the moment, an arbitrary small category C. A presheaf
of sets on C is a contravariant set-valued functor on C. Such a presheaf
P is said to be locally constant if, for any arrow f : c → c′ in C, the map
P (f) : P (c′) → P (c) is a bijection. We denote by

Lc(C)

the full subcategory of the category of presheaves on C consisting of all
locally constant presheaves.

For a discrete group K, a (right) principal K-bundle over C is a con-
travariant functor from C into the category of sets equipped with a right
free and transitive action of K. The morphisms between such sets are
functions which preserve the action. Since any such function is a bijec-
tion, any principal K-bundle over C is a locally constant presheaf.

Proposition 4.25 Let G be a connected étale groupoid, and let U be a
basis of simply connected open sets on G0. The the functor

Γ: Sh(G) −→ {presheaves of sets on EmbU (G)} , (18)

defined as in Section 4.5, restricts to an equivalence of categories between
covering spaces and locally constant presheaves

Γ: Cs(G) −→ Lc(EmbU (G)) . (19)

Furthermore, for each discrete group K, this equivalence restricts to an
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equivalence between the category of principal K-bundles over G and that
of principal K-bundles over EmbU (G).

Proof Consider a G-sheaf E of sets. If the étale space E → G0 is a
covering projection, then clearly for each arrow σ : U → V in EmbU (G)
the map σ∗ : Γ(V,E) → Γ(U,E) is and isomorphism. So the functor (18)
maps covering spaces to locally constant presheaves.

To see that it is an equivalence, observe that there is also the following
inverse construction. If P is a locally constant presheaf on EmbU (G), one
can make a covering space P̂ of G0 as follows: points of P̂ are equivalence
classes of triples (x,U, p) where x ∈ U ∈ U and p ∈ P (U). If x ∈ U ⊂ V

and i : U → V denotes the inclusion, then the equivalence relation
identifies (x, V, p) with (x,U, P (i)(p)). For each U ∈ U and p ∈ P (U),
there is an obvious map U → P̂ sending x ∈ U to the equivalence class
of (x,U, p), and the topology on P̂ is defined by requiring that each of
these maps be an open embedding. It is routine to show that this defines
a covering space over G0. The groupoid G acts naturally on the space
P̂ . Indeed, if (y, V, p) represents a point in P̂ and if g : x → y is an arrow
in G, we can find a small neighbourhood U ∈ U of x and a bisection
σ : U → G1 through g such that σ defines an arrow U → V in EmbU (G).
Then g acts on the equivalence class of (y, V, p) by mapping it to the
equivalence class of (x,U, P (σ)(p)).

We leave it to the reader to check that this construction is inverse
up to isomorphism to Γ, establishing the equivalence (19). It will then
be clear that this equivalence maps principal K-bundles to principal
K-bundles.

Principal K-bundles over a small category C can be described by
a ‘non-abelian’ cohomology in degree one. Explicitly, a 1-cocycle on C
with values in K is a map γ : C1 → K with the property that, for any
composable pair f : c → c′, g : c′ → c′′ in C,

γ(gf) = γ(g)γ(f) .

In other words, γ is just a functor from C into the group K, viewed as
a category with one object only. Two such 1-cocycles γ and δ are called
cohomologous it there exists a map α : C0 → K (a 0-cochain) such that
for any arrow f : c → c′ in C

δ(f) = α(c′)γ(f)α(c)−1 .

This defines an equivalence relation on 1-cocycles. The set of equivalence
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classes is denoted by

H1(C,K)

and is the non-abelian cohomology of C with coefficients in K. If K is
abelian then H1(C,K) is an abelian group, and the definition agrees
with the one of Section 4.5.

Proposition 4.26 Let C be a small category and K a discrete group.
There is a natural bijective correspondence between H1(C,K) and the
collection of isomorphism classes of principal K-bundles over C.

Proof Suppose P is a principal K-bundle over C. Pick for each object c

of C a point pc ∈ P (c). Such a point pc defines an isomorphism of right
K-sets φc : K → P (c) by φc(k) = pck. For any arrow f : c → c′ in C we
thus have a map of right K-sets

φ−1
c ◦P (f) ◦φc′ : K −→ K

which must be given by a left multiplication with a unique element in
K, the inverse of which we denote by γP (f). Thus the defining equation
for γP (f) is

φc(γP (f)−1k) = P (f)(φc′(k)) .

It follows that γP is a 1-cocycle, because for another arrow g : c′ → c′′

in C we have

φc((γP (g)γP (f))−1k) = φc(γP (f)−1γP (g)−1k)

= P (f)φc′(γP (g)−1k)

= P (f)P (g)φc′′(k)

= P (gf)φc′′(k) ,

so γP (g)γP (f) satisfies the defining identity for γP (gf).
Suppose that I : P → Q is a map (necessarily an isomorphism) of

principal K-bundles over C. Let φc : K → P (c) and ψc : K → Q(c) be
isomorphisms as above. Then for each c, the composition

ψ−1
c ◦ Ic ◦φc : K −→ K

is a map of right K-sets, necessarily given by left multiplication by an
element αI(c) ∈ K. So the defining equation for αI(c) is

ψc(αI(c)k) = Ic(φc(k)) .
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Then

ψc(αI(c)γP (f)−1αI(c′)−1k) = Icφc(γP (f)−1αI(c′)−1k)

= IcP (f)φc′(αI(c′)−1k)

= P (f)Ic′φc′(αI(c′)−1k)

= P (f)ψc′(αI(c′)αI(c′)−1k)

= P (f)ψc′(k) ,

so αI(c)γP (f)−1αI(c′)−1 satisfies the defining equation for γQ(f). In
particular, γQ and γP are cohomologous. This shows that the construc-
tion P → [γP ], from principal K-bundles over C to H1(C,K), is well
defined on isomorphism classes, and in particular does not depend on
the choice of the isomorphisms φc.

In the reverse direction, let [γ] ∈ H1(C,K) be the cohomology class
of a cocycle γ. Define a presheaf P = P (γ) by P (c) = K for any object
c of C, and by

P (f)(k) = γ(f)−1k

for any arrow f : c → c′ in C. Then P is a functor because γ is a cocycle.
So P is a principal K-bundle over C.

We leave to the reader the easy verification that these two construc-
tions are inverse to each other.

Corollary 4.27 Let G be a connected étale groupoid with a base-point
x0 ∈ G0, and let U be a basis of simply connected open sets on G0.

(i) For any discrete group K, there is a natural isomorphism

H1(EmbU (G),K) ∼= [π1(G, x0),K] ,

where the right-hand side denotes the set of conjugacy classes of homo-
morphisms from π1(G, x0) to K.

(ii) For each abelian group A there is a natural isomorphism

H1(G,A) ∼= Hom(π1(G, x0), A) .

Proof (i) follows form the previous proposition and Corollary 3.19.
If we choose the basis U to consists of contractible open sets, then
H1(EmbU (G), A) = H1(G,A) by Corollary 4.22. Given this, (ii) follows
from (i).
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Compactly supported cohomology

In this chapter we will discuss a cohomology with compact supports for
étale groupoids, first introduced in [14], and further developed in [16, 45].
Our presentation is based on these sources. This compactly supported
theory will again be invariant under Morita equivalence, hence is well
defined for the wider class of foliation groupoids.

Given the fact that many of the étale groupoids arising in the context
of foliations are non-Hausdorff, the notion of ‘compact support’ needs to
be applied in the context of non-Hausdorff manifolds. The appropriate
definition for which the usual properties known in the Hausdorff case
extend to this wider context is somewhat subtle, and we have decided
to devote the first section of this chapter to a detailed discussion of this
matter. Subsequently, we introduce the cohomology theory with com-
pact supports, and develop its main general properties. In particular,
we discuss the covariant operation φ!, we derive a Hochschild-Serre type
spectral sequence, and we prove the Morita invariance already referred
to above. The theory is in some sense dual to the cohomology theory
developed in the previous chapter. We will make this more precise by
proving that the cohomology groups with compact supports are isomor-
phic to suitable homology groups of the embedding category. This result
is parallel to the result for cohomology proved in Chapter 4, and leads
to an easy proof of Poincaré duality for étale groupoids.

The compactly supported cohomology discussed here is related by
natural maps to the basic cohomology with supports [25], and to foliated
cohomology of [27, 49]. By the same maps, the Poincaré duality discussed
here can be compared to the one of [56]. We refer to [14, 16] where some
of these relations are made explicit.

242
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5.1 Compact supports for sheaves over
non-Hausdorff manifolds

In the previous chapter, we have used basic facts for sheaves on topolog-
ical spaces, as available from any of the standard sources (e.g. [32, 4]). In
this chapter, we will be concerned with compact supports in the context
of étale groupoids such as holonomy groupoids of foliations. Here one is
faced with the following difficulty: On the one hand, in order to develop
the theory of compactly supported cohomology, all the standard sources
for classical sheaf theory restrict attention to paracompact Hausdorff
spaces of finite cohomological dimension. On the other hand, the mani-
folds occurring in the context of foliations and their holonomy groupoids
are usually non-Hausdorff. For this reason, we begin this chapter with a
preliminary section, where we show how the usual operations involving
compact supports (Γc, f!, ...) can be extended in an essentially unique
way to non-Hausdorff manifolds.

Readers familiar with these operations in the Hausdorff case, who are
prepared to believe that such an extension exists, may prefer to skip this
section on a first reading of this chapter.

So, to fix the scope of this section, we assume that any space X has an
open cover by subsets U ⊂ X each of which are paracompact, Hausdorff,
locally compact, and of cohomological dimension bounded by a number
d (depending on X but not on U).

Let X be a space satisfying these general assumptions. An abelian
sheaf A on X is said to be c-soft if for any Hausdorff open U ⊂ X its
restriction A|U is a c-soft sheaf on U in the usual sense [32]. By the
same property for Hausdorff spaces, it follows that c-softness is a local
property; i.e. a sheaf A is c-soft if and only if there is an open cover
X =

⋃
Ui such that each A|U is a c-soft sheaf on A.

Let A be a c-soft sheaf on X and let G(A) be its Godement resolution
(see Example 4.8 (2)). For any Hausdorff open set W ⊂ X, let Γc(W,A)
be the usual set of compactly supported sections. If W ⊂ U and U is
non-Hausdorff, the usual ‘extension by zero’ may map an element of
Γc(W ) to a discontinuous section over U . (For example, consider the
non-Hausdorff manifold U = R∪R−{0} R, the line with one double point

•

�� 



•

and let W be the upper copy of R. If σ ∈ Γc(W ) is a section with
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σ(0) 
= 0, then its extension to U is discontinuous.) Thus, extension
by zero is a map Γc(W,A) → Γc(U,G(A)). For any (not necessarily
Hausdorff) open set U ⊂ X, we define Γc(U,A)) to be the image of the
map: ⊕

W

Γc(W,A) −→ Γ(U,G(A)) ,

where W ranges over all Hausdorff open subsets W ⊂ U . An alternative
definition follows by choosing a Hausdorff open cover in Proposition 5.2
below.

Observe that Γc(U,A) so defined is evidently functorial in A, and that
for any inclusion U ⊂ U ′ we have an ‘extension by zero’ monomorphism
Γc(U,A) → Γc(U ′, A).

The following lemma shows that in the definition of Γc(U,A), it is
enough to let W range over a Hausdorff open cover of U ; in particular, it
shows that the definition agrees with the usual one if U itself is Hausdorff.

Lemma 5.1 Let A be a c-soft sheaf on X. For any open cover U =⋃
Wi, where each Wi is Hausdorff, the sequence

⊕
i Γc(Wi, A) →

Γc(U,A) → 0 is exact.

Proof It suffices to show that for any Hausdorff open W ⊂ U , the
map

⊕
i Γc(W ∩ Wi, A) → Γc(W,A) is surjective. This is standard

([19, 32]).

Proposition 5.2 (Mayer-Vietoris sequence) Let X =
⋃

i Ui be an
open cover indexed by an ordered set I, and let A be a c-soft sheaf on
X. Then there is a long exact sequence

. . . −→
⊕
i0<i1

Γc(Ui0i1 , A) −→
⊕
i0

Γc(Ui0 , A) −→ Γc(X,A) −→ 0 (1)

Here Ui0...in = Ui0 ∩ . . . ∩ Uin , as usual. (There is of course a similar
exact sequence if I is not ordered.)

Proof The proposition is of course well known in the case where X is
a paracompact Hausdorff space ([5]). We first reduce the proof to the
case where each of the Ui is Hausdorff, as follows. Let X =

⋃
j∈J Wj

be a cover by Hausdorff open sets, and consider the double complex
Cp,q =

⊕
Γc(Wj0...jp ∩ Ui0...iq , A), where the sum is over all j0 < . . . <

jp and i0 < . . . < iq. For a fixed p ≥ 0, the column Cp,• is a sum
of exact Mayer-Vietoris sequences for the Hausdorff open sets Wj0...jp

,
augmented by Cp,−1 =

⊕
j0<...<jp

Γc(Wj0...jp
, A). Keeping the notation

Ui0...iq
= X = Wj0...jp

if q = −1 = p, we observe that for a fixed q ≥ −1,
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the row C•,q is a sum of Mayer-Vietoris sequences for the spaces Ui0..iq

with respect to the open covers {Wj ∩ Ui0..iq
}. So, if the proposition

would hold for covers by Hausdorff sets, each row C•,q (q ≥ −1) is
also exact. By a standard double complex argument it follows that the
augmentation column C−1,• is also exact, and this column is precisely
the sequence in the statement of the proposition. This shows that it
suffices to prove the proposition in the special case where each Ui is
Hausdorff.

So assume each Ui ⊂ X is Hausdorff. Observe first that exactness
of the sequence (1) at Γc(X,A) now follows by Lemma 5.1. To show
exactness elsewhere, consider for each finite subset I0 ⊂ I the space
U I0 =

⋃
i∈I0

Ui and the following subsequence:

. . . −→
⊕

i0,i1∈I0, i0<i1

Γc(Ui0i1 , A) −→
⊕
i0∈I0

Γc(Ui0 , A) −→ Γc(U I0 , A) −→ 0

(2)
of (1). Clearly (1) is the directed union of the sequences of the form
(2), where I0 ⊂ I ranges over all finite subsets of I. So exactness of (1)
follows from exactness of each such sequence of the form (2). Thus, it
remains to prove the proposition in the special case of a finite cover {Ui}
of X by Hausdorff open sets.

So assume X = U1 ∪ ... ∪ Un where each Ui is Hausdorff. For n = 1,
there is nothing to prove. For n = 2, the sequence has the form

0 −→ Γc(U1∩U2, A) −→ Γc(U1, A)⊕Γc(U2, A) −→ Γc(U1∩U2, A) −→ 0 .

This sequence is exact at Γc(X,A) by Lemma 5.1, and evidently exact
at other places. Exactness for n = 3 can be proved using exactness for
n = 2. Indeed, consider the large diagram below, whose upper two rows
are the sequences for n = 2, 3 and whose third row is constructed by
taking vertical cokernels, so that all columns are exact (we delete the
sheaf A from the notation) (compare to [3, p. 187]). To show that the
middle row is exact, it thus suffices to prove that the lower row is exact.
This row can be decomposed into a Mayer-Vietoris sequence for the case
n = 2, already shown to be exact,

0 −→ Γc(U123) −→ Γc(U13)⊕ Γc(U23) −→ Γc(U3 ∩ (U1 ∪ U2)) −→ 0

and the sequence 0 → Γc(U3 ∩ (U1 ∪ U2)) → Γc(U3) → C → 0. The
exactness of the latter sequence is easily proved by a diagram chase,
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using exactness of the right-hand column.

0

��

0

��

0

��

0

��

0

��

�� Γc (U12)

��

�� Γc (U1)⊕Γc (U2)

��

�� Γc (U1∪U2) ��

��

0

Γc (U123)

��

�� ⊕1≤i< j≤3Γc (Uij )

��

�� Γc (U1)⊕Γc (U2)⊕Γc (U3)

��

�� Γc (U1∪U2∪U3)

��

�� 0

Γc (U123) ��

��

Γc (U13)⊕Γc (U23)

��

�� Γc (U3)

��

π �� C

��

�� 0

0 0 0 0

An identical argument will show that the exactness for a cover by
n + 1 opens follows from exactness for one by n opens, so the proof is
completed by induction.

Remarks 5.3 Proposition 5.2 is our main tool for transferring standard
facts from sheaf theory on Hausdorff spaces to the non-Hausdorff case,
as illustrated by the following consequences:

(i) Let Y ⊂ X be a closed subspace, and let A be a c-soft sheaf on
X. There is an exact sequence

0 → Γc(X − Y,A) i→ Γc(X,A) r→ Γc(Y,A) → 0

(i is extension by zero, r is the restriction). This (including the fact that
the map r is well defined) follows by elementary homological algebra
from the fact that this holds for Hausdorff spaces, by using Proposition
5.2 for a cover of X by Hausdorff open sets Ui, and for the induced
covers of Y by {Ui ∩ Y } and X − Y by {Ui − Y }.

(ii) For a family Ai of c-soft sheaves on X the direct sum ⊕Ai is again
c-soft, and Γc(X,⊕Ai) ∼= ⊕Γc(X,Ai). In particular, when working over
R, we have for any c-soft sheaf S of R-vector spaces and any vector space
V that the tensor product S⊗R V (here V is the constant sheaf) is again
c-soft, and the familiar formula Γc(X,S ⊗R V ) ∼= Γc(X,S)⊗R V .

(iii) Let A → B be a quasi-isomorphism between chain complexes
of c-soft sheaves on X. Then Γc(X,A) → Γc(X,B) is again a quasi-
isomorphism. (By a ‘mapping cone argument’ [60, p. 19] we may assume
that B = 0. In other words, we have to show that Γc(X,A) is acyclic
whenever A is. This follows from the Mayer-Vietoris sequence of Proposi-
tion 5.2 together with the Hausdorff case. (We remark that it is necessary
to assume that the chain complexes are bounded below if X does not
have finite cohomological dimension.)
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Next, we consider the operation f! for sheaves of R-modules ([32]) in
the non-Hausdorff case:

Proposition 5.4 Let f : Y → X be a continuous map. There is a
functor f! from c-soft sheaves on Y to c-soft sheaves on X with the
following properties, for any c-soft sheaf B on Y :

(i) For any open U ⊂ X there is a natural isomorphism

Γc(U, f!B) ∼= Γc(f−1(U), B) .

(ii) For any point x ∈ X we have f!(B)x = Γc(f−1(x), B).
(iii) For any fibered product

Z ×X Y

q

��

p
�� Y

f

��

Z
e �� X

along an étale map e there is a natural isomorphism q!p
∗B ∼= e∗f!B.

(see Proposition 5.5 below for the case where e is not étale).

Proof We first construct f! with the stated properties in the special
case where X is Hausdorff. For general X, the construction of f! is then
obtained by gluing the construction over a cover of X by Hausdorff open
sets.

So assume that X is Hausdorff. Consider a c-soft sheaf B on Y . For
any open set V ⊂ Y , denote by BV the sheaf on Y obtained by extending
B|V by zero. Thus BV is evidently c-soft, and Γc(Y,BV ) = Γc(V,B).
Moreover, an inclusion V ⊂ W induces an evident map BV ↪→ BW .

Now let Y =
⋃

Wi be a cover by Hausdorff open sets. This cover
induces a long exact sequence:

. . . −→
⊕
i0<i1

BWi0i1
−→

⊕
i0

BWi0
−→ B −→ 0

of c-soft sheaves on Y . By the Remark 5.3 (iii), the functor Γc(Y,−)
applied to this long exact sequence again yields an exact sequence, and
this is precisely the Mayer-Vietoris sequence of Proposition 5.2. For each
i0, . . . , in let fi0,...,in : Wi0,...,in → X be the restriction of f ; this is a map
between Hausdorff spaces, so we have (fi0,...,in )!(B|Wi0, . . . , in

) defined as
usual. Define f!(B) as the cokernel fitting into a long exact sequence:

. . . −→
⊕
i0<i1

(fi0i1)!(B|Wi0i1
) −→

⊕
i0

(fi0)!(B|Wi0
) −→ f!(B) −→ 0 .

(3)
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Note that f!(B) is c-soft because, by the Hausdorff case, each of the

(fi0,...,in
)!(B|Wi0, . . . , in

)

is. Property (i) now easily follows from the Hausdorff case by Mayer-
Vietoris arguments. To prove (ii), note that for x ∈ X, we have

(fi0)!(BWi0
)x = Γc(f−1(x) ∩Wi0 ;B)

by the Hausdorff case. So taking stalks of the long exact sequence in
(3) at x and using the Mayer-Vietoris sequence of Proposition 5.2 for
the space f−1(x), we find f!(B)x = Γc(f−1(x), B) as required. Finally,
property (iii) is clear from the local nature of the construction.

For an arbitrary (not-necessarily c-soft) sheaf A on Y , we define f!(A)
as a complex of c-soft sheaves on X, by first taking the resolution 0 →
A → S0 → S1 → . . . of A of c-soft sheaves on Y , and then define
f!(A) to be the complex f!(S0) → f!(S1) → . . .. Notice that, in case
A is itself already c-soft, by Proposition 5.4 (ii) and Remark 5.3 (iii),
this complex is quasi-isomorphic to the single sheaf f!(A) viewed as a
complex concentrated in degree 0.

More generally, we define f! as a functor D(Y ) → D(X) at the level of
derived categories, by first taking a c-soft resolution of a given complex
and then applying the functor of Proposition 5.4 to each sheaf separately.
This is well-defined by Remark 5.3 (iii) and Proposition 5.4 (ii).

Proposition 5.5 (Change of base) For any pull-back diagram

Z ×X Y

q

��

p
�� Y

f

��

Z
e �� X

and any sheaf B on Y , there is a canonical quasi-isomorphism q!p
∗B !

e∗f!B.

Proof Using Mayer-Vietoris for covers of X and Z by Hausdorff open
sets, it suffices to consider the case where X and Z are both Hausdorff.
Clearly it also suffices to prove the lemma in the special case where B

is c-soft.
Let Y =

⋃
Wi as in the remark above, so that f!(B) fits into a long

exact sequence (3) of c-soft sheaves on X. Applying the exact functor
e∗ to this sequence and using the proposition in the Hausdorff case, one
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obtains a long exact sequence of the form:

. . . −→
⊕
i0<i1

q!p
∗(BWi0i1

) −→
⊕
i0

q!p
∗(BWi0

) → e∗f!(B) −→ 0 . (4)

Now let p∗(B) → S• be a c-soft resolution over the pull-back Z ×X Y .
Then for any open U ⊂ Y , S•

p−1(U) is a c-soft resolution of p∗(BU ), so
q!(S•

p−1(U)) is a c-soft resolution of q!p
∗(B). The lemma now follows by

comparing the sequence (4) to the defining sequence

. . . −→
⊕
i0<i1

q!(S•
p−1Wi0i1

) −→
⊕
i0

q!(S•
p−1Wi0

) −→ q!(S•) −→ 0

where q!(p∗(B)) = q!(S•) by definition.

Example 5.6 (f! on étale maps) Let f : Y → X be an étale map, i.e.
a local homeomorphism. The pull-back functor f∗ : ShR(X) → ShR(Y )
has an exact left-adjoint f! : ShR(Y ) → ShR(X), described on the stalks
by f!(B)x =

⊕
y∈f−1(x) By. This construction agrees with the one de-

scribed above. In particular, for étale f , the counit of the adjunction
defines a map Σf : f!f

∗(B) → B, ‘summation along the fiber’, for any
sheaf B on X.

Example 5.7 (f! on proper maps) Define a map f : Y → X be-
tween (non-necessarily Hausdorff) spaces to be proper if

(i) the diagonal Y → Y ×X Y is closed, and
(ii) for any Hausdorff open U ⊂ X and any compact K ⊂ U , the set
f−1(K) is compact.

It is easy to see that if f is proper then f! = f∗, as in the Hausdorff
case. Furthermore, for any c-soft sheaf A on X, there is a natural map
Γc(X,A) → Γc(Y, f∗A) defined by pull-back, as in the Hausdorff case.

5.2 Compactly supported cohomology of étale
groupoids

Throughout this chapter we shall work with sheaves over R. (But let
us remark that the arguments also apply to sheaves of R-modules for
any ring R of finite cohomological dimension, provided all spaces are
assumed to have finite cohomological dimension with respect to R.) For
an étale groupoid G and a G-sheaf A (of R-modules), we will define in
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this section cohomology groups

Hi
c(G,A) , i ∈ Z ,

to be referred to as the cohomology with compact supports of G with co-
efficients in the sheaf A. It will be proved that these cohomology groups
are invariant under Morita equivalence. As a consequence, there are also
well defined groups Hi

c(G,A) for any foliation groupoid G; in particu-
lar, the theory applies to the holonomy and monodromy groupoids of
foliations. But, as for cohomology in Chapter 4, we will not attempt to
develop the theory for more general Lie groupoids.

So, consider an étale groupoid G and a G-sheaf A. Recall that from
G we have constructed a simplicial space, the nerve of G (Section 4.2),

G0 G1




 G2 . . .










in which each of the face maps di : Gn → Gn−1, i = 1, . . . , n, is étale.
Recall also that each G-sheaf A induces sheaves A(n) on Gn,

A(n) = λ∗
n(A) ,

where λn maps a string (g1, . . . , gn) to s(gn). Each face di : Gn → Gn−1

induces a map

Σdi : Γc(Gn, A(n)) −→ Γc(Gn−1, A(n−1)) (5)

defined by the condition that it makes the following diagram commuta-
tive.

Γc(Gn, A(n))
∼= ��

Σdi

��

Γc(Gn, d∗i A(n−1))

∼=
��

Γc(Gn−1, A(n−1)) Γc(Gn−1, (di)!d∗i A(n−1))
Σdi



Here the top horizontal map comes from the canonical isomorphism
A(n)

∼= d∗i (A(n−1)) (cf. (5)), the right hand vertical isomorphism is the
one of Proposition 5.4 (i), and the bottom horizontal map is summation
along the fiber (Example 5.6). Thus, modulo canonical isomorphisms,
the left hand vertical map is summation along the fibers of di, and
therefore we denote this map again by Σdi , as in (5).

In this way, one obtains a simplicial abelian group

Γc(G0, A(0)) Γc(G1, A(1))




 Γc(G2, A(2)) . . .










(6)

and hence, by taking alternating sums of the Σdi
in the usual way, a chain
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complex Γc(G•, A(•)). We will view this as a bounded above cochain
complex concentrated in negative degrees.

For a complex S of G-sheaves, this construction yields a double com-
plex

Γc(G−p, S
q
(−p))

concentrated in degrees p ≤ 0. If S is bounded above, then so are the
rows and columns of this double complex, as well as its total complex
given in degree n by ⊕

q−p=n

Γc(Gp, S
q
(p)) . (7)

Let us call a G-sheaf S c-soft if it is c-soft as a sheaf on G0. Observe
that, since G is étale, this implies that each induced sheaf S(n) on Gn is
again c-soft. If A is an arbitrary G-sheaf (over R), there always exists a
bounded above resolution of A by c-soft G-sheaves; indeed if d = dim(G),
there exists such a resolution

0 −→ A −→ S0 −→ S1 −→ . . . −→ Sd −→ 0 .

For example, one can take the functorial resolution by differential forms

0 −→ A −→ A⊗ Ω0 −→ A⊗ Ω1 −→ . . . −→ A⊗ Ωd −→ 0 ;

or one can take the Godement resolution or an injective resolution, and
truncate it at degree d (cf. [4, p. 116]).

Definition 5.8 For an étale groupoid G and a G-sheaf A (over R), the
groups Hi

c(G,A) are the cohomology groups of the total complex (7),
for any bounded above resolution S of A by c-soft G-sheaves.

Remarks 5.9 (1) The groups Hi
c(G,A) are well defined, and do not

depend on the resolution S. Indeed, it is easy to see that any two res-
olutions map into a third; moreover, if S → T is a quasi-isomorphism
between bounded above complexes of c-soft sheaves, then by Remark 5.3
(iii), the map of double complexes

Γc(G−p, S
q
(−p)) −→ Γc(G−p, T

q
(−p))

is a quasi-isomorphism for each fixed p, and hence [60, pp. 59–60] induces
a quasi-isomorphism of total complexes.

(2) Note that for any étale groupoid G of dimension d, the groups
Hi

c(G,A) are concentrated in degrees i ≤ d.
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(3) The dual groups

Hi(G,A) = H−i
c (G,A)∨

could be called the Borel-Moore homology groups of G, analogously to
the case of topological spaces [32, p. 374].

(4) The cohomology groups H∗
c (G,A) depend covariantly on A in the

evident way, and a short exact sequence

0 −→ A −→ B −→ C −→ 0

of G-sheaves induces a long exact sequence in compactly supported co-
homology,

. . . −→ Hn
c (G,A) −→ Hn

c (G,B) −→ Hn
c (G,C) −→ Hn+1

c (G,A) −→ . . .

as usual.

Examples 5.10 As first examples, we mention some extreme cases.
(1) Consider a manifold M and a sheaf A on M . We can view M

as an étale groupoid, the unit groupoid u(M) (which we also denote
simply by M), and A as a u(M)-sheaf. Then H∗

c (u(M), A) is the usual
cohomology with compact supports H∗

c (M,A) of the manifold M with
coefficients in the sheaf A.

(2) Consider a discrete group Γ, and a right R[Γ]-module A. We can
view Γ as an étale groupoid of dimension 0, and A as a Γ-sheaf. Then
Hn

c (Γ, A) is the reindexed group homology H−n(Γ, A).
(3) Suppose Γ is a discrete group acting (from the right, say) on a

manifold M , and suppose A is an equivariant sheaf on M . Then the
action groupoid M � Γ is an étale groupoid and A is an M � Γ-sheaf.
For a bounded c-soft resolution S of A, the double complex computing
H∗

c (M � Γ, A) takes the form⊕
(γ1,...,γp )

Γc(M,Sq)

in bidegree (−p, q), and we find a spectral sequence

Hp(Γ,Hq
c (M,A)) ⇒ Hq−p

c (M � Γ, A) .

In other words, the compactly supported cohomology of the groupoid
M �Γ is some mixture of compactly supported cohomology of the man-
ifold M and the group homology of Γ.

Next, we consider hypercohomology with compact supports. Let G be
an étale groupoid, and let A be a bounded above complex of G-sheaves.
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Then there is quasi-isomorphism (a resolution) A → S into a bounded
above complex of c-soft sheaves, and one can define the hypercohomol-
ogy groups with compact supports Hi

c(G,A) in the same way, as the
cohomology of the total complex Γc(G−p, S

q
(−p)). By the same argument

as in Remark 5.9 (1), this does not depend on the choice of a resolution
S of A.

Proposition 5.11 (Hypercohomology spectral sequence) Let A

be a bounded above cochain complex of G-sheaves, as above, and con-
sider for each q ∈ Z the cohomology sheaf Hq(A). There is a natural
spectral sequence

Ep,q
2 = Hp

c (G,Hq(A)) ⇒ Hq+p
c (G,A) .

Proof Consider the resolution 0 → A → A ⊗ Ω0 → . . . → A ⊗ Ωd → 0
by differential forms, and write C for the triple cochain complex

Cp,q,r = Γc(G−p, A
q ⊗ Ωr)

(we omit the lower index on (Aq ⊗ Ωr)(−p) = Aq
(−p) ⊗ Ωr from the

notation). Let D be the double complex

Dn,q =
⊕

p+r=q

Cp,q,r .

The total complex of C, and hence also that of D, computes the hy-
percohomology H∗

c (G,A). The complex C is bounded in r and bounded
above in p and q. Thus there is a spectral sequence of double complexes

HnHq(D) ⇒ Hn+q
c (G,A) .

But, for fixed p and r, one has

Hq(Cp,•,r) = Γc(G−p,H
q(A)⊗ Ωr) . (8)

(Indeed, for the G-sheaves Zq(A), Bq(A) and Hq(A) of cycles, bound-
aries and cohomology of A, the tensor products Zq(A)⊗Ωr, Bq(A)⊗Ωr

and Hq(A) ⊗ Ωr are all c-soft. From this and exactness of - ⊗ Ωr the
isomorphism (8) follows.) Thus

Hq(Dn,•) =
⊕

p+r=n

Γc(G−p,H
q(A)⊗ Ωr) ,

and hence HnHq(D) = Hn
c (G,Hq(A)).
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5.3 The operation φ!

In this section we will construct for any homomorphism φ : K → G

between étale groupoids an operation φ!, from bounded above complexes
of c-soft K-sheaves to such complexes of G-sheaves. In the next section,
we will then derive a Leray (-Hochschild-Serre) spectral sequence for the
map φ, and use it to prove the Morita invariance of compactly supported
cohomology.

So, let G and K be étale groupoids, and let φ : K → G be a ho-
momorphism. Let G0/φ be the comma category: its objects are pairs
(y, g : x → φ(y)) with y ∈ K0 and g ∈ G1, and its arrows from
(y, g : x → φ(y)) to (y′, g′ : x′ → φ(y′)) are arrows h : y → y′ in H

such that φ(h)g = g′ (so there are such arrows only if x = x′). Note
that G0/φ is again an étale groupoid (cf. Section 2.4). It has the obvious
projection homomorphisms

K
φ̃←− G0/φ

π−→ G0 . (9)

(We view π as a homomorphism into the manifold G0 viewed as the unit
groupoid.)

The nerve of G0/φ is a simplicial manifold

(G0/φ)0 (G0/φ)1




 (G0/φ)2 . . .










(10)

and the functor π in (9) induces projections

πn : (G0/φ)n −→ G0 (11)

compatible with the simplicial structure. The fiber of the functor π :
G0/φ → G0 in (9) over a point x ∈ G0 is the familiar comma groupoid
x/φ. If g′ : x′ → x is an arrow in G, then precomposition with g′ induces
an obvious homomorphism x/φ → x′/φ. Thus, the groupoid G acts from
the right on the comma groupoid G0/φ along the map π (cf. (9)). Con-
sequently, each of the spaces (G0/φ)n carries a right G-action along πn

(cf. (11)), and these actions are compatible with the simplicial structure.
In other words, Nerve(G0/φ) is a simplicial G-space. Explicitly, a point
of (G0/φ)n is a string

(y0
k1←− y1

k1←− . . .
kn←− yn, φ(yn)

g←− x) (12)

and G acts by precomposing on the last coordinate,

(k1, . . . , kn, g)g′ = (k1, . . . , kn, gg′) .

Now suppose S is a c-soft K-sheaf. Then S pulls back along the
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projection φ̃ : G0/φ → K to a sheaf φ̃∗(S) on G0/φ, which induces
sheaves

φ̃∗(S)(n)

on (G0/φ)(n) as before: the stalk of φ̃∗(S)(n) at a point of the form (12)
is Syn . Observe that φ̃∗(S) and each of the φ̃∗(S)(n) are c-soft because
φ̃ : G0/φ → K is étale.

Using the map πn of (11), we now obtain a c-soft sheaf

(πn)!(φ̃∗(S)(n)) (13)

on G0, the stalk of which over a point x ∈ G0 is given by the formula
(cf. Proposition 5.4 (ii))

(πn)!(φ̃∗(S)(n))x = Γc((x/φ)n, φ̃∗(S)) (14)

(where on the right we have denoted the restriction of φ̃∗(S) to x/φ

again by φ̃∗(S)). Since (G0/φ)n is a G-space, this sheaf (πn)!(φ̃∗(S)(n))
on G0 is in fact a G-sheaf. At the level of stalks (14), the action by an
arrow g′ : x′ → x is the map

Γc((x/φ)n, φ̃∗(S)) −→ Γc((x′/φ)n, φ̃∗(S))

induced by the diffeomorphism (x/φ)n → (x′/φ) given by composition
with g′. Also, since the (G0/φ)n form a simplicial G-space, these G-
sheaves (πn)!(φ̃∗(S)(n)) in fact form a simplicial G-sheaf: its stalk at x ∈
G0 is exactly the simplicial abelian group (6) of Section 5.2, associated
to the étale groupoid x/φ and its sheaf φ̃∗(S). By taking alternating
sums, we thus obtain a chain complex of G-sheaves, and by reindexing,
a cochain complex concentrated in negative degrees. This complex is
denoted by

φ!(S) .

More generally, for a bounded above cochain complex of c-soft K-
sheaves S, we define φ!(S) as the total complex associated to the double
complex

(π−p)!(φ̃∗(Sq)(−p)) .

The stalk of this complex at x ∈ G0 is the complex

Γc((x/φ)−p, φ̃
∗(Sq)(−p))

which defines the hypercohomology H∗
c (x/φ, φ̃∗(S)). In particular, if
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S → T is a quasi-isomorphism between bounded above cochain com-
plexes of c-soft K-sheaves, then by Remark 5.9 (1) it induces isomor-
phism

H∗
c (x/φ, φ̃∗(S)) −→ H∗

c (x/φ, φ̃∗(T ))

for any point x ∈ G0. In other words, the induced map φ!(S) → φ!(T )
is a quasi-isomorphism between bounded above cochain complexes of
G-sheaves.

If A is a bounded above complex of arbitrary (not necessarily c-
soft) K-sheaves, we define φ!(A) to be φ!(S) where A → S is a quasi-
isomorphism (a resolution) by a bounded above complex S of c-soft
K-sheaves. Then by the observation above, φ!(A) is well defined up to
quasi-isomorphism. Moreover, a map A → B induces a map of res-
olutions and hence a map φ!(A) → φ!(B), again well define up to
quasi-isomorphism. In other words, the construction provides a functor
φ! : D−(K) → D−(G).

We summarize the discussion in the following theorem.

Theorem 5.12 Let φ : K → G be a homomorphism between étale
groupoids. Then φ induces a functor

φ! : D−(K) −→ D−(G) .

For any bounded above complex A of K-sheaves and any point x ∈ G0,
the stalk of φ!(A) at x computes the compactly supported cohomology of
x/φ with coefficients in the (x/φ)-sheaf φ̃∗(A) obtained by pulling back
A along x/φ → K,

H∗(φ!(A)x) = H∗
c (x/φ, φ̃∗(A)) .

For a complex A as in the theorem, we will write

Rqφ!(A) = Hq(φ!(A)) , q ∈ Z ,

for the cohomology sheaves of the complex φ!(A). Then the theorem
gives the formula

Rqφ!(A)x = H∗
c (x/φ, φ̃∗(A))

for the stalks of Rqφ!(A).

Examples 5.13 (1) If φ : N → M is a smooth map between manifolds,
we can view φ as a homomorphism between unit groupoids. In this case,
the functor φ! : D−(N) → D−(M) constructed above for groupoids
agrees with the usual one for spaces.
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(2) Let φ : K → G be a homomorphism between discrete groups,
viewed as one-object étale (discrete) groupoids. Then G-sheaves are
R[G]-modules, and D−(G) is the derived category of bounded above
cochain complexes of R[G]-modules; similarly for K. For the unique ob-
ject x ∈ G0, the comma groupoid x/φ is a sum of connected discrete
groupoids indexed by the right G-set of cosets Im(φ)/G, and x/φ is
Morita equivalent to the sum of groups∑

ξ∈Im(φ)/G

Ker(φ) ,

where G acts by acting on the cosets. Thus, the functor φ! : D−(K) →
D−(G) sends a complex A to the complex⊕

ξ∈Im(φ)/G

i∗(A)

of G-modules, where i∗(A) denotes the restriction of A along the in-
clusion i : Ker(φ) → K. In particular, is φ is a surjection and A is
concentrated in degree 0, then

Rqφ!(A) = H−q(Ker(φ), i∗(A)) .

(3) Let G be an étale groupoid, and let E be a right G-space,
with action along a map p0 : E → G0. Let E � G be the semi-
direct product groupoid, and write p : E � G → G for the projec-
tion. This is a homomorphism between étale groupoids. If S is a c-soft
E � G-sheaf, then the sheaf (p0)!(S) carries a natural G-action: the
stalk of (p0)!(S) at a point x ∈ G0 is Γc(p−1(x), S), and any arrow
g : x → y in G induces an action map ρg : p−1

0 (y) → p−1
0 (x) and an

isomorphism of sheaves S|p−1
0 (y) → ρ∗g(S|p−1

0 (x)), hence an isomorphism
Γc(p−1

0 (y), S) → Γc(p−1
0 (x), S). This shows that (p0)! lifts to a func-

tor from c-soft E � G-sheaves to c-soft G-sheaves. This functor agrees
with the functor p!(S) constructed above. Indeed, p!(S) is a complex of
G-sheaves whose stalk at x computes H∗

c (x/φ, S). But the étale group-
oid x/φ is (strongly) equivalent to the space p−1

0 (x) (viewed as a unit
groupoid), via the functors

x/φ ��
p−1
0 (x)



sending an object g : x → p(e) to eg ∈ p−1
0 (x) and a point e ∈ p−1

0 (x)
to 1x : x → p0(e), respectively. Thus there is a simplicial homotopy
contracting Nerve(x/φ) to the constant simplicial space p−1

0 (x), and
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H∗
c (x/φ, S) ∼= H∗

c (p−1
0 (x), S). (This is in fact a special case of Morita

invariance, to be proved in the next section.) In this way, we find that
for the square

E

p0

��

v �� E � G

p

��

G0
u �� G

we have u∗p! = (p0)!v∗ as functors D−(E � G) → D−(G0). This is a
special case of the change-of-base formula in the next section.

5.4 Leray spectral sequence, Morita invariance
and change-of-base

In this section we will discuss some of the basic properties of the oper-
ation φ! which has just been introduced. To begin with, we will derive
the Leray-Hochschild-Serre type spectral sequence involving φ!. Next, as
a first application of this spectral sequence ,we will prove the Morita in-
variance of compactly supported cohomology. We will also prove a base
change formula for (weak) pull-back squares of étale groupoids. As spe-
cial cases of these general properties, we discuss compactly supported
cohomology of orbifolds, and prove a comparison result for foliations
similar to Theorem 4.18.

Proposition 5.14 (Leray spectral sequence) Let φ : K → G be a
homomorphism between étale groupoids, and let A be a bounded above
complex of K-sheaves. There is a natural spectral sequence

Ep,q
2 = Hp

c (G,Rqφ!(A)) ⇒ Hp+q
c (K,A) .

Proof The hypercohomology spectral sequence of Proposition 5.11 takes
the form Hp

c (G,Rqφ!(A)) ⇒ Hp+q
c (G,φ!(A)), so it is sufficient to estab-

lish a natural isomorphism

Hp
c (G,φ!(A)) = Hp

c (K,A) . (15)

By the usual double complex arguments, it suffices to do this for a single
c-soft K-sheaf A (rather than a complex A). So, let A be such a sheaf.
Spelling out the definitions, we find that we need to establish a quasi-
isomorphism

Γc(G•, λ
∗
•φ!(A)) = Γc(K•, λ

′∗
• (A)) (16)
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where λn : Gn → G0 and λ′
n : Kn → K0 are the ‘last vertex’ maps, cf.

Section 4.2. The complex φ!(A) is given in degree −m by applying (πm)!,
for the projection πm : (G0/φ)m → Gm, cf. (11). Consider the fibered
product Sn,m as in the following diagram.

K0 Km

λ′
m

 Sn,m

qn ,m




pn ,m

��

rn ,m
�� (G0/φ)m

πm

��

Gn
λn �� G0

Thus Sn,m is the space of strings

(y0
k1←− y1

k2←− . . .
km←− ym, φ(ym)

g←− xn
gn−→ xn−1

gn−1−→ . . .
g1−→ x0) ,

and we have written pn,m, qn,m and rn,m for the evident projections.
Notice that, since G is an étale groupoid, the maps λn, rn,m and qn,m

are all étale.
The sheaf φ̃∗(A)(m) on (G0/φ)m occurring in the definition of φ!(A)

has stalk Aym at (y0 ← y1 ← . . . ← ym, φ(ym) ← x). Thus

r∗n,mφ̃∗(A)(m) = q∗n,mλ′∗
m(A) = q∗n,m(A(m)) ,

and this is a c-soft sheaf on Sn,m because qn,m is étale. So, using the
base change formula λ∗

n(πm)! = (pn,m)!r∗n,m for spaces (cf. Proposition
5.4 (iii)), we find a natural isomorphism

λ∗
n(πm)!(φ̃∗(A)(m)) = (pn,m)!r∗n,m(φ̃∗(A)(m)) = (pn,m)!q∗n,m(A(m)) .

Thus

Γc(Gn, λ∗
n(πm)!(φ̃∗(A)(m))) = Γc(Gn, (pn,m)!q∗n,m(A(m)))

= Γc(Sn,m, q∗n,m(A(m)))

= Γc(Km, (qn,m)!q∗n,m(A(m))) .

For a fixed m, the stalk of the complex (q•,m)!q∗•,m(A(m)) at a point
(y0 ← y1 ← . . . ← ym) of Km computes the compactly supported
cohomology of the comma groupoid G/φ(ym) with coefficients in the
vector space Aym

. Since G is étale, the groupoid G/φ(ym) is discrete,
and H∗

c (G/φ(ym), Aym
) is the usual homology of discrete groupoids or

categories. This homology vanishes in positive degrees because G/φ(ym)
has a terminal object. This shows that the ‘summation along fibers’ map

(q•,m)!q∗•,m(A(m)) −→ A(m)
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is a quasi-isomorphism of complexes of c-soft sheaves on Km. Thus

Γc(Km, (qn,m)!q∗n,m(A(m))) −→ Γc(Km, A(m))

is a quasi-isomorphism for any fixed m, and hence a quasi-isomorphism
of double complexes. Since the domain of this quasi-isomorphism has
been shown to be isomorphic to the complex Γc(Gn, λ∗

n(πm)!(φ̃∗(A)(m)))
which computes H∗

c (G,φ!(A)), this gives the desired quasi-isomorphism
(16).

Corollary 5.15 (Morita invariance) Let φ : K → G be a weak equiv-
alence of étale groupoids. Then for any bounded above complex A of
G-sheaves, φ induces an isomorphism

H∗
c (K,φ∗(A)) −→ H∗

c (G,A) .

Proof The map φ is necessarily étale by [48, Exercise 5.16 (4)]. For a
point x ∈ G0, the comma groupoid x/φ is discrete and equivalent to
x/G. Hence H∗

c (x/φ, φ̃∗(φ∗(A))) is the homology of the discrete groupoid
x/G with coefficients in Ax, hence vanishes in non-zero degrees. This
shows that the Leray spectral sequence collapses, to give the stated
isomorphism.

Example 5.16 (Orbifolds) The Leray spectral sequence equally ap-
plies to topological groupoids. In particular, if G is a proper étale group-
oid, its orbit space M = |G| is a paracompact Hausdorff space, and we
have a Leray spectral sequence for the quotient map φ : G → M ,

Hp
c (M,Rqφ!(A)) ⇒ Hp+q

c (G,A) ,

with stalks of Rqφ!(A) given by the homology of the isotropy groups

(Rqφ!(A))φ(x) = H−q(Gx, Ax)

(analogous to Corollary 4.12). When working over R (or more generally,
over a ring R with the property that #Gx is a unit in R), the spectral
sequence collapses, to give an isomorphism

H∗
c (G,A) = H∗

c (M,AG)

where AG denotes the sheaf of coinvariants, with stalk (AG)φ(x) =
H0(Gx, Ax) at any point φ(x) ∈ M .

As another application of the Leray spectral sequence, we state a
comparison theorem for foliations analogous to Theorem 4.17.

Corollary 5.17 Let M be a manifold of dimension n, equipped with a
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foliation F of dimension p. Suppose there is a number d such that the
holonomy cover L̃ of each leaf L of F has the property that Hi

c(L̃, R) = 0
for p − d ≤ i < p. Then for each Hol(M,F)-sheaf A there is a natural
isomorphism

Hs
c (M,u∗(A)) −→ Hs−p

c (HolT (M,F), A)

for any s = n−d, . . . , n, where u : M → Hol(M,F) denotes the inclusion
of units and T ⊂ M is a complete transversal section of (M,F).

Remark. We have simply written A for the restriction of A to the
étale holonomy groupoid HolT (M,F). Note that, by Poincaré duality
(see also Section 5.5) the hypothesis on Hi

c(L̃, R) is equivalent to the
requirement that Hj(L̃, R) = 0 for any 0 < j ≤ d in case L̃ is orientable.
Furthermore, Hp

c (L̃, R) = R. Also, by Remark 5.3 (ii), the hypothesis
implies that Hi

c(L̃, V ) = 0, p− d ≤ i < p, for any vector space V .

Proof (Proof of Corollary 5.17) Consider the pull-back square

P

v

��

k �� M

u

��

HolT (M,F)
j

�� Hol(M,F)

of the proof of Theorem 4.17 in Section 4.4, in which the horizontal
maps are weak equivalences. In particular, the homomorphism k induces
isomorphisms

H∗
c (P, k∗u∗A) = H∗

c (M,u∗A) ,

so the Leray spectral sequence for the map v can be written as

Es,t
2 = Hs

c (HolT (M,F), Rtv!v
∗A) ⇒ Hs+t

c (M,u∗A)

(where on the left, we have written A for j∗A again). Recall that for
a point x ∈ T , the comma groupoid x/v is Morita equivalent to the
holonomy cover L̃x of the leaf Lx through x (cf. Section 4.4). Thus, as
in Example 5.13 (2), the stalks of Rtv!v

∗A are given by

(Rtv!v
∗A)x = Ht

c(L̃x, Ax) ,

where on the right the coefficients are in the vector space Ax. In partic-
ular, since Hp

c (L̃x, Ax) = Ax, we have

(i) Es−p,p
2 = Hs−p

c (HolT (M,F), A).

Also, since T has dimension q and L̃x has dimension p, we have
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(ii) Es,t
2 = 0 for s > p, or t > p, or p− d ≤ t < p,

the last case being the hypothesis of the corollary. Thus, the corollary
would follow if we show that (ii) implies that

(iii) Es−p,p
2 = Es−p,p

∞ and
(iv) Es−i,i

2 = 0 for i 
= p.

This is simply a matter of bookkeeping the degrees of differentials

Es−r,t+r−1
2

dr−→ Es,t
q

dr−→ Es+r,t−r+1
r , r ≥ 2 ,

in the spectral sequence. Indeed, the image of dr inside Es−p,p
r is zero

because Es′,t′

r = 0 for t′ > p. Also, the kernel of dr inside Es−p,p
r is all

of Es−p,p
r as soon as Es−p+r,p−r+1

r = 0, and this holds for s ≥ n− d− 1
because then either p − d ≤ p − r + 1 < p or s − p + r > q. Thus (iii)
holds if s ≥ n− d− 1. Next, for (iv), notice that (ii) already gives that
Es−i,i

2 = 0 for p− d < i < p and for i > p, so that we only need to check
that Es−i,i

2 = 0 for 0 ≤ i < p − d. But in this case, if s ≥ n − d then
s− i > n− p = q.

Next, we turn to the change-of-base formula.

Proposition 5.18 Let

P

ψ

��

b �� H

φ

��

K
a �� G

be a weak pull-back square of étale groupoids. Then

a∗φ! = ψ!b
∗ : D−(H) −→ D−(K) .

Proof We will prove that for any c-soft H-sheaf B, there is a quasi-
isomorphism

a∗φ!(B) ∼= ψ!b
∗(B) ,

natural in B. It then follows by the usual double complex arguments that
there also is a similar quasi-isomorphism for any such bounded below
complex B of H-sheaves, since any such complex has a resolution by
c-soft H-sheaves.

So, fix a c-soft H-sheaf B, and a bounded resolution b∗(B) → S by
c-soft P -sheaves. The complex φ!(B) of G-sheaves has as its stalk as x ∈
G0 the complex Γc((x/φ)n, B) computing the cohomology H∗

c (x/φ,B).



5.4 Leray spectral sequence, and change-of-base 263

(Here we have abused notation, and we have simply written B for φ̃∗(B)n

and for φ̃∗(B), respectively.) Thus a∗φ!(B) is the complex with stalk

Γc((a(z)/φ)n, B) (17)

computing H∗
c (a(z)/φ,B) at any point z ∈ K0.

On the other hand, ψ!b
∗(B) is the complex of K-sheaves whose stalk

at a point z ∈ K0 is the complex (total complex of double complex)

Γc((z/ψ)n, Sm) (18)

computing H∗
c (z/ψ, S) = H∗

c (z/ψ, b∗(B)).
For a fixed z ∈ K0, the quasi-isomorphism b∗(B) → S restricts along

the inclusion

iz : a(z)/φ −→ P

to a quasi-isomorphism i∗zb
∗(B) → i∗z(S) over a(z)/φ, and this gives a

quasi-isomorphism of complexes

Γc((a(z)/φ)n, i∗zb
∗(B)) −→ Γc((a(z)/φ)n, i∗z(S

m)) (19)

Now consider the homomorphism of étale groupoids

πz : z/ψ −→ a(z)/φ

sending an object (z k−→ z′, a(z′)
g−→ φ(y)) of z/ψ to the object

ga(k) : z → φ(y) of z/ψ, and with the evident effect on arrows. Since
this homomorphism πz is a Morita equivalence, Corollary 5.15 (or more
precisely, the proof of Proposition 5.14) provides a canonical quasi-
isomorphism

Γc((a(z)/φ)n, i∗z(S
m)) −→ Γc((z/ψ)n, π∗

z i∗z(S
m)) (20)

Furthermore, since the composite homomorphism izπz : z/ψ →
a(z)/ψ → P is naturally isomorphic (but not equal) to the projection
ψ̃ : z/ψ → P , the complex π∗

z i∗z(S
•) in (20) is isomorphic to the com-

plex ψ̃∗(S)(n), which we simply denoted by S in (18). Since, moreover,
(granted our abuse of notation) the sheaf B on (a(z)/φ)n in (17) is the
same as the sheaf i∗zb

∗(B) in (19), the quasi-isomorphisms (19) and (20)
together give an explicit quasi-isomorphism

Γc((a(z)/φ)n, B) = Γc((z/ψ)n, Sm)

which is the stalk of the desired quasi-isomorphism

a∗φ!(B) = ψ!b
∗(B).
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5.5 Homology of the embedding category

The purpose of this section is to prove an analogue of Theorem 4.21
for compactly supported cohomology. As an application, we will derive
a form of Poincaré duality for étale groupoids. This will in particular
apply to leaf spaces of foliations, as modelled by étale groupoids.

In Section 4.5 we described the cohomology groups Hn(C, A) of a
small category C with coefficients in a contravariant functor (a presheaf)
from C into the category of abelian groups (or R-modules). Dually, for
a covariant such functor A, the homology groups Hn(C, A) are defined
as the homology groups of the complex C•(C, A), defined by

Cn(C, A) =
⊕

(f1,...,fn )∈Cn

A(s(fn)) ,

where the sum ranges over all composable strings c0
f1←− c1

f2←− . . .
fn←−

cn. The differential is the alternating sum of the face maps di : Cn →
Cn−1, where di maps the summand A(cn) for c0

f1←− c1
f1←− . . .

fn←− cn

into the summand A(cn) for di(f1, . . . , fn) by the identity map for i < n,
and into the summand A(cn−1) for dn(f1, . . . , fn) = (f1, . . . , fn−1) by
A(fn) for i = n.

Similarly, if A is a covariant functor from C into the category
of bounded below chain complexes, we define the hypercohomology
H∗(C, A) as the homology of the total complex associated to the double
complex

Cp(C, Aq) .

If A → B is a map (a natural transformation) between two such functors,
then by the usual argument, the induced map H∗(C, A) → H∗(C, B) is
an isomorphism whenever A(c) → B(c) is a quasi-isomorphism for each
object c of C.

We recall that there is an obvious duality between homology and
cohomology. For a covariant functor A from C into (say) real vector
spaces, let us write A∨ for the dual contravariant functor defined by
A∨(c) = A(c)∨ = Hom(A(c), R). Then the following proposition follows
immediately from the definition.

Proposition 5.19 For any small category C and any functor A from C
into real vector spaces, there is a natural isomorphism

Hn(C, A∨) = Hn(C, A)∨ .
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There is of course a similar isomorphism for hyper(co)homology, for
a bounded below chain complex A and its dual cochain complex A∨,
defined by (A∨)q = (Aq)∨.

Now let G be an étale groupoid of dimension d, let U be a basis for G0,
and let EmbU (G) be the associated embedding category. Any G-sheaf
A induces a covariant functor Γc(A) on EmbU (G) with values in vector
spaces, defined on objects by

Γc(A)(U) = Γc(U,A) .

The action of this functor on an arrow σ : U → V in EmbU (G) is defined
by the map σ∗ : Γc(U,A) → Γc(V,A), which is the composition of the
isomorphism Γc(U,A) = Γc(tσ(U), A) given by the action of G on A and
the extension by zero: Γc(tσ(U), A) → Γc(V,A).

Theorem 5.20 Let G be an étale groupoid and B be a c-soft sheaf.
Then there is a natural isomorphism

H−p
c (G,B) = Hp(EmbU (G),Γc(B)) (21)

for any p ≥ 0.

Remark. By the usual arguments, the theorem extends to the case
where B is a bounded above cochain complex of G-sheaves with the
property that Hi

c(U,Bq) = 0 for each i > 0, each q and each U ∈ U . In
this case we obtain an isomorphism of the form (21 where Γc(B) is the
chain complex Γc(B)q = Γc(B−q).

Proof (Proof of Theorem 5.20) The proof is actually quite similar to
that of Theorem 4.21, and the reader may well prefer to skip it. For
the present proof, it will be convenient to consider the chain complex

Cp(G,B) = Γc(Gp, B(p))

and its homology Hp(G,B), so that

Hp(G,B) = H−p
c (G,B) ,

since B is assumed to be c-soft. Recall now the bisimplicial space Sp,q

from the proof of Theorem 4.21, with p, q-simplices

U0
σ1←− U1

σ2←− . . .
σq←− Uq

g←− x0
g1←− x1

g2←− . . .
gp←− xp ,

and the c-soft sheaf Bp,q on Sp,q with stalk Bxp
at such a p, q-simplex.

Consider the bisimplicial abelian group

Cp,q(B) = Γc(Sp,q, B
p,q)
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and the associated double complex, which we also denote by Cp,q(B).
One could also write

Cp,q(B) =
⊕

U0←U1←...←Uq

Γc((G/Uq)p, B(p)) ,

where on the right G/Uq is the comma groupoid, and B(p) stands for the

sheaf on (G/Uq)p with stalk Bxp
at a point (x

g←− x0
g1←− . . .

gp←− xp)
with x ∈ Uq.

For a fixed q, the complex Γc((G/Uq)p, B(p)) computes the compactly
supported cohomology of the comma groupoid G/Uq. Since this groupoid
is Morita equivalent to the space Uq, Corollary 5.15 yields that, for a
fixed q, one has Hp(C•,q(B)) = H−p

c (Uq, B). Since B is assumed c-soft,
we find

Hp(C•,q(B)) = 0 , p > 0 ,

H0(C•,q(B)) = Γc(Uq, B) .

This shows that the homology of the total complex Tot(C•,•(B)) is iso-
morphic to H∗(EmbU (G),Γc(B)).

On the other hand, for a fixed p, we consider the projection pr =
prp,q : Sp,q → Gp, again as in the proof of Theorem 4.21. This projection

is an étale map, and at a point (x0
g1←− x1

g2←− . . .
gp←− xp) of Gp, the

stalk of pr!(B) is ⊕
U0←U1←...←Uq

⊕
g

Bxp ,

where g ranges over all arrows in G from x0 to some point x in Uq. This
stalk is a chain complex in q, and its homology is that of the colimit
of comma categories U/EmbU (G) where U ∈ U ranges over all neigh-
bourhoods of x0 (as in the proof of Theorem 4.21). Since these comma
categories each have an initial object and hence vanishing homology in
positive degrees, we find that Hq(pr!(B)x0) = 0 for q > 0 while

H0(pr!(B)x0) = lim
→ x∈U

H0(U/EmbU (G), Bxp
) ∼= Bxp

.

Thus, for a fixed p, the complex pr!(Bp,•) is quasi-isomorphic to the sheaf
B(p) on Gp (seen as a complex concentrated in degree 0). Since all sheaves
involved are c-soft, we conclude that Γc(Sp,•, B

p,•) = Γc(Gp,pr!(Bp,•))
is quasi-isomorphic to Γc(Gp, B(p)). Thus, for a fixed p, the homology of
the total complex of Cp,•(B) is isomorphic to H∗(G,B), and the theorem
is proved.
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Corollary 5.21 Let G be an étale groupoid, and let A be an arbitrary
G-sheaf. Then there is a natural isomorphism

H−p
c (G,A) = Hp(EmbU (G),Γc(A⊗ Ω−•)) .

Remark. On the right hand, this is the hyperhomology of the usual
complex of differential forms, reindexed so as to form a chain complex.

Corollary 5.22 Let G be an étale groupoid of dimension d, and let A

be a locally constant G-sheaf. Suppose that the basis U of G0 consists of
contractible open sets. Then there is a natural isomorphism

Hp
c (G,A) = Hd−p(EmbU (G),Hd

c ( - , A)) .

Proof The chain complex Γc(U,A⊗Ω−•) computes H−•
c (U,A), which is

zero except in degree −d. So the hypercohomology spectral sequence of
small categories collapses, and the previous corollary yields

H−p
c (G,A) = Hp(EmbU (G),Hd

c ( - , A)[d])

= Hd+p(EmbU (G),Hd
c ( - , A)) ,

where Hd
c ( - , A)[d] denotes the functor Hd

c ( - , A) concentrated in degree
−d. Replacing p by −p yields the result.

Next, we apply the duality for small categories (Proposition 5.19) to
étale groupoids. Let S be a c-soft G-sheaf. We define a dual G-sheaf
D(S) as follows. For each open subset U of G0, consider the vector
space Γc(U, S) and its dual Γc(U, S)∨. For two open subsets U ⊂ V of
G0, the extension-by-zero map dualizes to a restriction map Γc(V, S)∨ →
Γc(U, S)∨. With these restriction maps, the assignment U �→ Γc(U, S)∨

actually defines an injective sheaf on U , since S is c-soft. Indeed, the
gluing property for covers is the dual of the Mayer-Vietoris sequence of
Proposition 5.2 (see also [32]). This sheaf on G0 has a natural action
by the étale groupoid G, defined in the same way as the action of the
embedding category on the functor Γc(S) earlier in this section. The
G-sheaf obtained in this way is denoted D(S). Its definition can be
summarised by the identity

Γ(U,D(S)) = Γc(U, S)∨ (22)

for all open subsets U of G0. More generally, for an arbitrary G-sheaf
A, we take its resolution by differential forms, 0 −→ A −→ A⊗ Ω0 −→
. . . −→ A ⊗ Ωd −→ 0 (where d = dim(G)). Then for open subsets U of
G0, the assignment U �→ Γc(U,A⊗Ω−•) defines a covariant functor into
chain complexes, and, since each of the A⊗Ωq is c-soft, the dual functor
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U �→ Γc(U,A⊗Ω−•)∨ defines a cochain complex of G-sheaves, which we
denote by D(A). Thus

Γ(U,D(A)q) = Γc(U,A⊗ Ω−q)∨ . (23)

This notation is consistent with the earlier one (22), for c-soft sheaves
S, because if A = S is c-soft, then the double complex in (23) is quasi-
isomorphic to the complex D(S) (concentrated in degree 0) of (22).

Corollary 5.23 Let G be an étale groupoid, and let A be a G-sheaf.
There is a natural isomorphism

H−p
c (G,A)∨ = Hp(G,D(A)) .

Proof By Corollary 5.21 we have

H−p
c (G,A)∨ = Hp(EmbU (G),Γc(A⊗ Ω−•))∨ ,

while, by the analogue of Theorem 4.21 for cohomology,

Hp(G,D(A)) = Hp(EmbU (G),ΓD(A)) .

But ΓD(A)(U) = Γc(U,A ⊗ Ω−•)∨, so the duality for small categories
(Proposition 5.19) gives the result.

As an example, consider the case where A is the constant sheaf R.
Then D(R)(U) is the complex Γc(U,Ω−q)∨. Since Hi

c(U, R) = R for
i = d and zero otherwise, D(R) is quasi-isomorphic to Hd

c (U, R)∨ con-
centrated in degree d. Recall that U �→ Hd

c (U, R)∨ is by definition the
orientation sheaf on G0 (cf. [32]). It is in fact again a G-sheaf. If we
denote this orientation G-sheaf by O, then we conclude that there is a
quasi-isomorphism

D(R) −→ O[d]

where O[d] is the cochain complex of sheaves given by O concentrated
in degree −d.

Thus, as a special case of the previous corollary, we obtain the fol-
lowing version of Poincaré duality for étale groupoids.

Corollary 5.24 Let G be an étale groupoid of dimension d. There is a
natural isomorphism

Hp
c (G, R)∨ = Hd−p(G,O) .
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1

Reductive Lie Groups: Definitions and Basic
Properties

The results stated in this section are fairly standard. Proofs and further
details can be found in [23], for instance.

1.1 Basic Definitions and Examples

In these notes “Lie algebra” means finite dimensional Lie algebra over R
or C. These arise as Lie algebras of, respectively, Lie groups and complex
Lie groups. We begin by recalling some basic definitions:

Definition 1.1 A Lie algebra g is simple if it has no proper ideals and
dim g > 1. A Lie algebra g is semisimple if it can be written as a direct
sum of simple ideals gi,

g = ⊕1≤i≤N gi .

One calls a Lie algebra g reductive if it can be written as a direct sum
of ideals

g = s⊕ z ,

with s semisimple and z = center of g. A Lie group is simple, respectively
semisimple, if it has finitely many connected components and if its Lie
algebra is simple, respectively semisimple. A Lie subgroup G ⊂ GL(n, R)
or G ⊂ GL(n, C) is said to be reductive if it has finitely many connected
components, its Lie algebra is reductive and ZG0 = center of the iden-
tity component G0 of G consists of semisimple linear transformations –
equivalently, if ZG0 is conjugate, possibly after extension of scalars from
R to C, to a subgroup of the diagonal subgroup in the ambient GL(n, R)
or GL(n, C).

275



276 1 Reductive Lie Groups: Definitions and Basic Properties

Remark 1.2 Our definition of a reductive Lie algebra is not the one
most commonly used, but is equivalent to it. The semisimple ideal s is
uniquely determined by g since s = [g, g].

In the definition of a simple Lie algebra we require dim g > 1 because
we want to exclude the one-dimensional abelian Lie algebra, which is
reductive.

We shall talk about reductive Lie group only in the context of linear
groups, i.e., for Lie subgroups of GL(n, R) or GL(n, C). Note that the
Lie groups

{(
et 0
0 e−t

) ∣∣∣∣ t ∈ R
}

,

{(
1 x

0 1

) ∣∣∣∣ x ∈ R
}

are both isomorphic to the additive group of real numbers, and hence to
each other, but only the first is reductive in the sense of our definition.

Example 1.3 The Lie groups SL(n, R), SL(n, C) are simple; the Lie
groups GL(n, R), GL(n, C) are reductive. Any compact real Lie group
is a linear group, as can be deduced from the Peter-Weyl Theorem, and
is moreover reductive (see for example Proposition 1.59, Theorem 4.20
and its Corollary 4.22 in [23]).

Remark 1.4 We will show in Example 1.13 that the universal covering
˜SL(n, R) of SL(n, R), n ≥ 2, is not a linear group.

One studies reductive Lie groups because these are the groups that
naturally arise in geometry, physics and number theory. The notion of
semisimple Lie group is a slight generalization of the notion of simple
Lie group, and the notion of reductive Lie group in turn generalizes the
notion of semisimple Lie group.

1.2 Maximal Compact Subgroups and the Cartan
Decomposition

From now on we shall use the symbol GR to denote a linear reductive
Lie group; we reserve the symbol G for the complexification of GR – see
section 1.3. As a standing assumption, we suppose that ZG0

R

= center of
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the identity component G0
R

can be expressed as a direct product

ZG0
R

= C ·A , with C compact, A ∼= (Rk,+) for some k ≥ 0, and

aR = Lie algebra of A has a basis {ξ1, . . . , ξk} such that each ξj

is diagonalizable, with rational eigenvalues.
(1)

The ξj are regarded as matrices via the embedding GR ⊂ GL(n, R) or
GR ⊂ GL(n, C) that exhibits GR as linear group. In the present section,
real eigenvalues would suffice, but the rationality of the eigenvalues will
become important when we complexify GR.

Example 1.5 The groups GL(n, R), GL(n, C) satisfy the condition (1):
for GR = GL(n, R), ZG0

R

= { c · 1n×n | c ∈ R, cn > 0} and C =
{±1 ·1n×n} or C = {1n×n}, depending on whether n is even or odd. For
GR = GL(n, C), ZG0

R

is the group of non-zero complex multiples of the
identity matrix and C = { c · 1n×n | |c| = 1}. In both cases, aR consists
of all real multiples of the identity matrix, and A = exp(aR) ∼= (aR,+) ∼=
(R,+).

We let KR ⊂ GR denote a maximal compact subgroup. Maximal com-
pact subgroups exist for dimension reasons. The following general facts
can be found in [16], for example.

Proposition 1.6 Under the stated hypotheses on GR,

a) any compact subgroup of GR is contained in some maximal compact
subgroup KR, and dimR KR ≥ 1 unless GR is abelian;

b) any two maximal compact subgroups of GR are conjugate by an
element of GR;

c) the inclusion KR ↪→ GR induces an isomorphism of component
groups KR/K0

R
! GR/G0

R
;

d) if GR is semisimple, the normalizer of KR in GR coincides with
KR.

Since the maximal compact subgroups are all conjugate, the choice
of any one of them is non-essential. At various points, we shall choose a
maximal compact subgroup; the particular choice will not matter.

Let gR and kR denote the Lie algebras of GR and KR, respectively.
Then KR acts on gR via the restriction of the adjoint representation Ad.
We recall the Cartan decomposition of gR:
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Proposition 1.7 There exists a unique KR-invariant linear comple-
ment pR of kR in gR (so gR = kR ⊕ pR as direct sum of vector spaces),
with the following properties:
a) The linear map θ : gR → gR, defined by

θξ =

{
ξ, if ξ ∈ kR;

−ξ, if ξ ∈ pR,

is an involutive automorphism of gR; equivalently, [pR, pR] ⊂ kR and
[kR, pR] ⊂ pR.
b) Every ξ ∈ pR ⊂ gl(n, C) is diagonalizable, with real eigenvalues; here
pR ⊂ gR ⊂ gl(n, C) refers to the inclusion induced by the inclusion of
Lie groups GR ⊂ GL(n, R) ⊂ GL(n, C) or GR ⊂ GL(n, C).

Remark 1.8 Analogously to b), every ξ ∈ kR ⊂ gl(n, C) is diagonal-
izable, with purely imaginary eigenvalues. Indeed, {t �→ exp tξ} is a
one-parameter subgroup of KR, and must therefore have bounded ma-
trix entries; that is possible only when ξ is diagonalizable over C, with
purely imaginary eigenvalues.

One calls θ : gR → gR the Cartan involution of gR. It lifts to an
involutive automorphism of GR, which we also denote by θ.

Example 1.9 The group GR = SL(n, R) contains KR = SO(n) as max-
imal compact subgroup. In this situation

gR = {ξ ∈ End(Rn) | tr ξ = 0},
kR = {ξ ∈ End(Rn) | tξ = −ξ, tr ξ = 0},
pR = {ξ ∈ End(Rn) | tξ = ξ, tr ξ = 0}.

On the Lie algebra level, θξ = −tξ, and on the group level, θg = tg−1.
The group KR can be characterized as the fixed point set of θ, i.e.,
KR = {g ∈ GR; θg = g}.

The Cartan decomposition of gR has a counterpart on the group level,
the so-called global Cartan decomposition:

Proposition 1.10 The map KR×pR → GR, defined by (k, ξ) �→ k·exp ξ,
determines a diffeomorphism of manifolds.

In the setting of the above example the proposition is essentially
equivalent to the well-known assertion that any invertible real square
matrix can be expressed uniquely as the product of an orthogonal ma-
trix and a positive definite symmetric matrix.
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Remark 1.11 As a consequence of the proposition, KR ↪→ GR is a
strong deformation retract. In particular this inclusion induces isomor-
phisms of homology and homotopy groups.

1.3 Complexifications of Linear Groups

We continue with the hypotheses stated in the beginning of the last
subsection. Like any linear Lie group, GR has a complexification – a
complex Lie group G, with Lie algebra

g =def C⊗R gR , (2)

containing GR as a Lie subgroup, such that
a) the inclusion GR ↪→ G induces gR ↪→ g, ξ �→ 1⊗ ξ, and
b) GR meets every connected component of G.

To construct a complexification, one regards GR as a subgroup1 of
GL(n, R), so that gR ⊂ gl(n, R). That makes g a Lie subalgebra of
gl(n, C) = C ⊗R gl(n, R). Then G0, the connected Lie subgroup of
GL(n, C) with Lie algebra g, satisfies the condition a). By construc-
tion G0

R
⊂ G0, and GR normalizes G0, hence G = GR ·G0 is a complex

Lie group with Lie algebra g, which contains GR and satisfies both a)
and b). When G is a complexification of GR, one calls GR a real form
of G. We do not exclude the case of a Lie group GR which happens to
be a complex Lie group; in the case of GR = GL(n, C), for example,
G ∼= GL(n, C)×GL(n, C) ⊂ GL(2n, C).

In general, the complexification of a linear Lie group depends on its
realization as a linear group. In our situation, the complexification G

inherits the property (1) from GR. It implies that G is determined by
GR up to isomorphism, but the embedding does depend on the realization
as real group, unless G0

R
has a compact center.

One can complexify the Cartan decomposition: let g = C ⊗R gR as
before, k = C ⊗R kR, and p = C ⊗R pR; then g = k ⊕ p as vector spaces.
The complexification G of GR naturally contains K = complexification of
KR, as complex Lie subgroup. Observe that K cannot be compact unless
KR = {e}, which does not happen unless GR is abelian; indeed, any non-
zero ξ ∈ kR is diagonalizable over C, with purely imaginary eigenvalues,
not all zero, so the complex one-parameter subgroup {z �→ exp(zξ)} of

1 If GR is presented as a linear group GR ⊂ GL(m, C), one uses the usual inclusion
GL(m, C) ↪→ GL(2m, R) to exhibit GR as subgroup of GL(n, R), with n = 2m.
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K is unbounded. By construction, the Lie algebras gR, kR, g, k and the
corresponding groups satisfy the following containments:

gR ⊂ g GR ⊂ G

∪ ∪ ∪ ∪
kR ⊂ k KR ⊂ K

(3)

Since [pR, pR] ⊂ kR and [kR, pR] ⊂ pR,

uR =def kR ⊕ ipR is a real Lie subalgebra of g. (4)

We let U0
R

denote the connected Lie subgroup of G with Lie algebra uR.
If GR is semisimple, one knows that U0

R
is compact [16]; as a consequence

of our hypotheses, U0
R

is compact even in the reductive case. Thus U0
R

lies in a maximal compact subgroup of G, which we denote by UR. Not
only is UR ⊂ G a maximal compact subgroup, but also

a) UR is a real form of G;

b) KR = UR ∩GR.
(5)

Both assertions are well known in the semisimple case, to which the
general case can be reduced.

The process of complexification establishes a bijection, up to isomor-
phism, between compact Lie groups and linear, reductive, complex Lie
groups2 satisfying (1); in the opposite direction, the correspondence is
given by the passage to a maximal compact subgroup, which is then
a compact real form of the complex group. The groups UR and G are
related in this fashion: the former is a compact real form of the latter.
In view of Remark 1.11, UR ↪→ G is a strong deformation retract, which
induces isomorphisms of homology and homotopy.

Example 1.12 The pair GR = SL(n, R), KR = SO(n), has complexi-
fications G = SL(n, C), K = SO(n, C); the corresponding compact real
form of G = SL(n, C) is UR = SU(n).

Since g = C ⊗R uR, these two Lie algebras have the same represen-
tations over C – representations can be restricted from g to uR, and in
the opposite direction, can be extended complex linearly. On the global

2 Any connected complex Lie group with a reductive Lie algebra can be realized as
a linear group; we mention the hypothesis of linearity to signal that we want the
linear realization to be reductive in the sense of our definition.
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level, these operations induce a canonical bijection
holomorphic

finite dimensional
representations of G

 !


finite dimensional

continuous complex
representations of UR

 , (6)

a bijection because UR ↪→ G induces an isomorphism of the compo-
nent group and the fundamental group. Of course we are also using the
well known fact that continuous finite dimensional representations of Lie
groups are necessarily real analytic, and are determined on the identity
component by the corresponding infinitesimal representations of the Lie
algebra.

We had mentioned earlier that the universal covering group of G =
SL(n, R), n ≥ 2, is not a linear group. We can now sketch the argument:

Example 1.13 Let ˜SL(n, R) be the universal covering group of
SL(n, R), n ≥ 2. Since

π1(SL(n, R)) = π1(SO(n)) =

{
Z, if n = 2;

Z/2Z, if n ≥ 3,

the universal covering ˜SL(n, R) → SL(n, R) is a principal Z-bundle

when n = 2 and a principal Z/2Z-bundle when n ≥ 3. If ˜SL(n, R)
were linear, its complexification would have to be a covering group of
SL(n, C) = complexification of SL(n, R), of infinite order when n = 2
and of order (at least) two when n ≥ 3. But SU(n), n ≥ 2, is simply
connected, as can be shown by induction on n. But then SL(n, C) =
complexification of SU(n) is also simply connected, and therefore cannot

have a non-trivial covering. We conclude that ˜SL(n, R) is not a linear
group.



2

Compact Lie Groups

In this section we consider the well understood case of a connected, com-
pact Lie group. As was remarked in Example 1.3, any such group is au-
tomatically linear and reductive. In the setting of chapter 1, the groups
KR and UR are compact, but not necessarily connected. In any case,
knowing the representations of the identity component explicitly gives
considerable information about the representations of a non-connected
compact group – modulo knowledge of the representations of the com-
ponent group, of course. In section 4, we shall suppose that the group
GR has a connected complexification G; in that case, UR will indeed be
connected. Let us state the hypotheses of the current section explicitly:

UR is a connected compact Lie group. (7)

As in the previous section g = C ⊗R uR denotes the complexified lie
algebra of UR.

2.1 Maximal Tori, the Unit Lattice, and the
Weight Lattice

A common strategy in mathematics is to study properties of a new class
of objects by looking for sub-objects whose properties are already known,
but which are “large enough” to convey some useful information about
the objects to be studied. In representation theory this means studying
representations of compact groups by restricting them to maximal tori,
while representations of noncompact linear reductive groups are studied
by restricting them to maximal compact subgroups.

With UR connected and compact, as we are assuming, let TR ⊂ UR

282
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denote a maximal torus. It is not difficult to see that maximal tori exist
and are nontrivial – i.e., dimTR > 0 – unless UR = {e}. Moreover,

Proposition 2.1

a) Any two maximal tori in UR are conjugate by an element of UR;
b) any g ∈ UR is conjugate to some t ∈ TR;
c) TR coincides with its own centralizer in UR, i.e., TR = ZUR

(TR);
d) TR is the identity component of its own normalizer in UR, i.e.,
TR = NUR

(TR)0.

We fix a particular maximal torus TR, with Lie algebra tR and com-
plexified Lie algebra t. In view of the Proposition, the particular choice
will not matter. Since TR is abelian and connected, the exponential
exp : tR → TR is a surjective homomorphism, relative to the additive
structure of tR.

Remark 2.2 The exponential mapping of a general connected Lie

group need not be surjective. For instance, g =
(
−1 1
0 −1

)
∈ SL(2, R)

cannot lie in the image of the exponential map. Indeed, if this element
of g could be expressed as g = exp ξ, for some ξ ∈ sl(2, R), then ξ is
not diagonalizable, even over C, since g is not diagonalizable over C.
That forces ξ to have two equal eigenvalues, necessarily eigenvalues zero
because tr ξ = 0. Contradiction: g = exp(ξ) does not have eigenvalues 1.

The exponential map exp : tR → TR is not only a surjective homo-
morphism, but also locally bijective, hence a covering homomorphism,

exp : tR/L −̃→ TR (L = {ξ ∈ tR | exp ξ = e} ) . (8)

That makes L ⊂ tR a discrete, cocompact subgroup. In other words,
L is a lattice, the so-called unit lattice. Let T̂R denote the group of
characters, i.e. the group of homomorphisms from TR to the unit circle
S1 = {z ∈ C | |z| = 1}. Then

Λ =def {λ ∈ it∗
R
| 〈λ,L〉 ⊂ 2πiZ } ∼−→ T̂R , (9)

Λ " λ �−→ eλ ∈ T̂R ,

with eλ : TR → {z ∈ C | |z| = 1} defined by eλ(exp ξ) = e〈λ,ξ〉, for any
ξ ∈ tR. One calls Λ ⊂ it∗

R
the weight lattice; except for the factor 2πi in

its definition, it is the lattice dual of the unit lattice L ⊂ tR.
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2.2 Weights, Roots, and the Weyl Group

Let π be a representation of UR on a finite-dimensional complex vector
space V – in other words, a continuous homomorphism π : UR → GL(V ).
Since TR is compact and the field C algebraically closed, the action of
any t ∈ TR can be diagonalized, and since TR is abelian, the action of
all the t ∈ TR can be diagonalized simultaneously. Thus we obtain the
weight space decomposition

V = ⊕λ∈Λ V λ , (10)

where

V λ = { v ∈ V | π(t)v = eλ(t)v ∀t ∈ TR }
= { v ∈ V | π(ξ)v = 〈λ, ξ〉v ∀ξ ∈ tR } .

If V λ 
= {0}, one calls λ, V λ, and dimV λ respectively a weight of π, the
weight space corresponding to λ, and the multiplicity of the weight λ.

In the case of the adjoint representation of UR on the complexified Lie
algebra g = C⊗RuR, one singles out the weight zero: g = g0⊕

(
⊕λ	=0 gλ

)
.

Evidently g0 ⊃ t, since TR acts trivially on t. In fact, g0 = t, for one could
otherwise show that TR is not a maximal torus. Nonzero weights of the
adjoint representation are called roots, hence

g = t ⊕ (⊕α∈Φ gα) , with Φ = Φ(g, t) = set of all roots . (11)

This is the root space decomposition of g relative to the action of TR,
or equivalently, relative to the action of t. One refers to Φ as the root
system. Very importantly,

α ∈ Φ =⇒ dim gα = 1 , (12)

i.e., all roots have multiplicity one. Since Φ ⊂ Λ− {0} ⊂ it∗
R
⊂ t∗, roots

take purely imaginary values on the real Lie algebra tR, which implies

gα = gα = g−α , and hence Φ = −Φ ; (13)

here gα denotes the complex conjugate of gα with respect to the real
form uR ⊂ g.

Let π : uR → gl(V ) denote the infinitesimal representation induced
by the global representation π considered at the beginning of this sub-
section, and π : g → gl(V ) its complex extension. The latter may be
interpreted as a linear map g⊗C V → V , which is UR-invariant – there-
fore also TR-invariant – when UR is made to act on g via Ad. Hence, for
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every α ∈ Φ and every weight λ of π,

π(gα)V λ ⊂ V λ+α ;

in particular

π(gα)V λ = 0 if λ + α is not a weight.

Applied to the adjoint representation, this means

[gα, gβ ] ⊂


gα+β if α + β ∈ Φ

t if α + β = 0

0 if α + β /∈ Φ ∪ {0} ,

(14)

for all roots α, β ∈ Φ.
An element ξ ∈ t is said to be singular if 〈α, ξ〉 = 0 for some root α,

and otherwise regular. The set

it′
R

=def { itR | ξ is regular } (15)

breaks up into a finite, disjoint union of open, convex cones, the so-
called Weyl chambers. If C ⊂ itR is a particular Weyl chamber and ξ an
element of C, the subset

Φ+ = {α ∈ Φ | 〈α, ξ〉 > 0} ⊂ Φ (16)

depends only on C, not on the choice of ξ ∈ C; by definition, Φ+ is a
system of positive roots. Essentially by construction,

a) Φ = Φ+ ∪ (−Φ+) (disjoint union);

b) α, β ∈ Φ+ , α + β ∈ Φ =⇒ α + β ∈ Φ+.
(17)

The Weyl chamber C can be recovered from the system of positive roots
Φ+,

C = { ξ ∈ itR | 〈α, ξ〉 > 0 } . (18)

In fact, C ←→ Φ+ establishes a bijection between Weyl chambers and
positive root systems.

Via the adjoint action, the normalizer NUR
(TR) acts on tR, on it∗

R
,

on Λ, on Φ, and on the set of Weyl chambers. Since TR = ZUR
(TR) =

NUR
(TR)0 by Proposition 2.1, the Weyl group

W = W (UR, TR) =def NUR
(TR)/TR (19)

is a finite group, which acts on tR, on it∗
R
, on the weight lattice Λ, and
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on Φ. This action permutes the Weyl chambers, hence also the positive
root systems.

Proposition 2.3 The Weyl group W (UR, TR) acts faithfully on tR, and
acts simply transitively on the set of Weyl chambers {C}, as well as on
the set of positive root systems {Φ+}.

In particular, if some n ∈ NUR
(TR) fixes a root system Φ+, then

n ∈ TR. In the following, we shall fix a positive root system Φ+. The
particular choice will not matter since they are all conjugate to each
other. The Weyl chamber C that corresponds to Φ+ is called the domi-
nant Weyl chamber.

2.3 The Theorem of the Highest Weight

We consider finite dimensional representations of UR on complex vector
spaces, as in the previous subsection. Recall that a finite dimensional rep-
resentation (π, V ) is irreducible if the representation space V contains
no UR-invariant subspaces other than {0} and V itself; it is completely
reducible if it can be written as the direct sum of irreducible subrepresen-
tations. If (π, V ) is unitary – i.e., if V comes equipped with UR-invariant
inner product – the orthogonal complement of an invariant subspace
is again invariant. One can therefore successively split off one minimal
invariant subspace at a time. Since minimal invariant subspaces are irre-
ducible, this shows that finite dimensional, unitary representations are
completely reducible. Any representation (π, V ) of the compact group
UR can be made unitary: one puts an arbitrary inner product on the
space V , and then uses Haar measure to average the g-translates of this
inner product for all g ∈ UR; the averaged inner product is UR-invariant.
This implies the well known fact that

finite dimensional representations of
compact groups are completely reducible.

In particular, to understand the finite dimensional representations of UR,
it suffices to understand the finite dimensional, irreducible representa-
tions.

The preceding discussion applies to any compact Hausdorff group.
We now return to the case of a connected, compact Lie group UR. Our
definitions and statements will involve the choice of a maximal torus TR

and a positive root system Φ+ ⊂ it∗
R
. As was remarked earlier, these
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are not essential choices. Since UR is compact, there exists a negative
definite, Ad(UR)-invariant, symmetric bilinear form

S : uR × uR −→ R , (20)

Ad(UR)-invariant in the sense that S
(
Ad g(ξ),Ad g(η)

)
= S(ξ, η), for

all ξ, η ∈ uR and g ∈ UR , or equivalently, on the infinitesimal level,

S
(
[ζ, ξ] , η

)
+ S

(
ξ , [ζ, η]

)
= 0 , for all ζ, ξ, η ∈ uR . (21)

One way to construct S is to take a finite-dimensional representation
(π, V ) which is faithful, or at least faithful on the level of the Lie algebra,
and define

S(ξ, η) = tr
(
π(ξ)π(η)

)
. (22)

Indeed, S is symmetric, bilinear, Ad(UR)-invariant by construction, and
any nonzero ξ ∈ uR acts on V dagonalizably, with purely imaginary
eigenvalues, not all zero, so tr

(
π(ξ)π(ξ)

)
< 0. If UR is semisimple, one

can let the adjoint representation play the role of π; in that case one
calls S the Killing form.

The bilinear form S is far from uniquely determined by the required
properties. However, its restriction to the various simple ideals in uR

is unique, up to scaling, as follows from Schur’s lemma. This partial
uniqueness suffices for our purposes.

Extending scalars from R to C, we obtain an Ad(UR)-invariant, sym-
metric, complex bilinear form S : g × g → C, which is positive definite
on iuR. By restriction it induces a positive definite inner product ( . , . )
on itR, and by duality also on it∗

R
. The Weyl group W = W (UR, TR)

preserves these inner products, since they are obtained by restriction of
an Ad(UR)-invariant bilinear form.

Definition 2.4 An element λ ∈ it∗
R

is said to be dominant if (λ, α) ≥ 0
for all α ∈ Φ+, and regular if (λ, α) 
= 0 for all α ∈ Φ.

These notions apply in particular to any λ in the weight lattice Λ. The
inner product identifies it∗

R
with its own dual itR, and via this identifi-

cation, the set of all dominant, regular λ ∈ it∗
R

corresponds precisely to
the dominant Weyl chamber C ⊂ tR, i.e., the Weyl chamber determined
by Φ+. Since W acts simply transitively on the set of Weyl chambers,
every regular λ ∈ it∗

R
is W -conjugate to exactly one dominant, regular

λ′ ∈ it∗
R
. In fact, this statement remains correct if one drops the con-

dition of regularity; this can be seen by perturbing a singular λ ∈ it∗
R
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slightly, so as to make it regular. The action of W preserves the weight
lattice, hence

every λ ∈ Λ is W -conjugate to a unique dominant λ′ ∈ Λ ; (23)

in other words, {λ ∈ Λ | λ is dominant} ∼= W\Λ.

Theorem 2.5 (Theorem of the Highest Weight) For an irre-
ducible, finite dimensional, complex representation π, the following
conditions on a weight λ of π are equivalent:

1. λ + α is not a weight, for any positive root α ∈ Φ+;
2. there exists a non-zero v0 ∈ V λ such that π(gα) v0 = 0 for all α ∈ Φ+;
3. any weight of π can be expressed as λ−A, where A is a sum of positive

roots (possibly empty; repetitions are allowed).

There exists exactly one weight λ of π with these (equivalent) properties,
the so-called highest weight of π. The highest weight is dominant, has
multiplicity one (i.e. dim V λ = 1), and determines the representation π

up to isomorphism. Every dominant λ ∈ Λ arises as the highest weight
of an irreducible representation π.

The assertion that property 2 implies property 3 can be deduced from
the Poincaré-Birkhoff-Witt theorem, and the other implications among
the three properties can be established by elementary arguments. Among
the remaining statements, only the existence of an irreducible finite di-
mensional representation with a given regular dominant weight requires
some effort. One can prove this existence statement analytically, via the
Weyl character formula, algebraically, by realizing the representation in
question as a quotient of a Verma module, or geometrically, as will be
sketched in subsection 2.5.

In effect, the theorem parameterizes the isomorphism classes of irre-
ducible finite dimensional representations over C in terms of their highest
weights,

irreducible
finite-dimensional complex

representations of UR

up to isomorphism

←→ {λ ∈ Λ | λ dominant} ←→ W\Λ .

(24)
Beyond the enumeration of irreducible finite dimensional representa-
tions, the theorem also provides structural information about these rep-
resentations. In fact, most of the general structural properties that are
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used in applications are consequences of the Theorem of the Highest
Weight.

2.4 Borel Subalgebras and the Flag Variety

We now also consider the complexification G of the connected compact
Lie group UR. In principle, its Lie algebra g = C ⊗R uR can be any
reductive Lie algebra over C, and G any connected, complex, reductive
Lie group.

Definition 2.6 A Borel subalgebra of g is a maximal solvable subalge-
bra. A Borel subgroup of G is a connected complex Lie subgroup of G

whose Lie algebra is a Borel subalgebra of g.

Proposition 2.7 Any two Borel subgroups of G, respectively Borel sub-
algebras of g, are conjugate under the action of G. Any Borel subgroup
B ⊂ G coincides with its own normalizer, i.e., NG(B) = B. In particu-
lar, Borel subgroups are closed.

Remark 2.8 The property NG(B) = B implies that any complex sub-
group of G whose Lie algebra is a Borel subalgebra is automatically con-
nected, and hence is a Borel subgroup. In other words, the requirement
of connectedness in Definition 2.6 can be dropped without changing the
notion of a Borel subgroup.

The linear subspaces of g of a fixed dimension constitute a smooth
projective variety, a so-called Grassmann variety. Being a subalgebra, or
more specifically a solvable subalgebra, amounts to an algebraic condi-
tion on an arbitrary point in this Grassmannian. Since all Borel subal-
gebras have the same dimension, call it d, a solvable subalgebra of g is
maximal solvable if and only if it has dimension d. We conclude that

X = set of all Borel subalgebras of g (25)

is a closed subvariety of the Grassmannian. This gives X the structure
of a complex projective variety. By definition, X is the flag variety of g.
We already know that G acts transitively on X via the adjoint action,
which is algebraic. In particular X is smooth.

The flag variety X can be characterized by a universal property: it
dominates all the complex projective varieties with a transitive, algebraic
action of G – any other variety Y with these properties is a G-equivariant
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quotient of X, i.e., the image of X under a surjective algebraic map that
relates the G-actions on X and Y . Such G-equivariant quotients of X

are called generalized flag varieties
As before, let TR ⊂ UR be a maximal torus, t its complexified Lie

algebra, and Φ+ a system of positive roots. One can show quite directly
that

b0 = t ⊕
(
⊕α∈Φ+ g−α

)
(26)

is maximal solvable in g, hence a Borel subalgebra. Any other Borel
subalgebra is conjugate to it under the action of G, and even under the
action of UR, as we shall see. The corresponding Borel subgroup B0 is
also the normalizer of B0, hence the normalizer of b0 in G – in other
words, B0 is the isotropy subgroup at b0 for the action of G on X. That
implies X ! G/B0, since G acts transitively on X.

Lemma 2.9 UR ∩B0 = TR.

Proof. Complex conjugation with respect to the real form uR ⊂ g maps
g−α to gα, hence b0 ∩ b0 = t, hence

uR ∩ b0 = (uR ∩ b0)∩ (uR ∩ b0) = uR ∩ b0 ∩ b0 = uR ∩ t = tR . (27)

On group level that means (UR ∩B0)0 = TR. Any n ∈ UR ∩B0 therefore
normalizes TR; n maps Φ+ to itself, since otherwise Ad n(b0) could not
equal b0, as it must. We had mentioned earlier that any n ∈ NUR

(TR)
which fixes Φ+ lies in TR. The lemma follows.

Because of the lemma, we can identify the UR-orbit through the iden-
tity coset in G/B0 ! X with UR/TR. This orbit is closed because UR is
compact, and is open, as can be seen by counting dimensions. Hence UR

acts transitively on X, and

X ! G/B0 ! UR/TR . (28)

The transitivity of the UR-action now implies that each Borel subgroup
of G intersects UR in a maximal torus. Arguing as in the proof of the
lemma, one finds that W = NUR

(TR)/TR acts simply transitively on the
set of Borel subgroups which contain TR. Thus each maximal torus in
UR lies in exactly N Borel subgroups, N = cardinality of W .

Example 2.10 A complete flag in Cn is a nested sequence of subspaces

0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Cn , dim Fj = j .

The tautological action of G = SL(n, C) on Cn induces a transitive
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action on the set of all such complete flags. As a consequence of Lie’s
theorem, any Borel subgroup of SL(n, C) is the stabilizer of a complete
flag. In the case of G = SL(n, C), then, the flag variety X is the variety
of all complete flags in Cn – hence the name flag variety.

2.5 The Borel-Weil-Bott Theorem

Recall the notion of a G-equivariant holomorphic line bundle over a
complex manifold with a holomorphic G-action – in our specific case,
a G-equivariant holomorphic line bundle over the flag variety X: it is
a holomorphic line bundle L → X, equipped with a holomorphic ac-
tion of G on L by bundle maps, which lies over the G-action on the
base X. The isotropy group at any point x0 ∈ X then acts on the fi-
bre Lx0 at x0. In this way, one obtains a holomorphic representation
ϕ : B0 → GL(1, C) = C∗ of B0, the isotropy group at the identity
coset in G/B0 ! X. One dimensional representations are customarily
called characters. Since G acts transitively on X, the passage from G-
equivariant holomorphic line bundles – taken modulo isomorphism, as
usual – to holomorphic characters ϕ : B0 → C∗ can be reversed,{

holomorphic G-equivariant
line bundles over X ! G/B0

}
!

{
holomorphic

characters of B0

}
. (29)

By construction this is an isomorphism of groups, relative to operations
of tensor product of G-equivariant holomorphic line bundles and multi-
plication of holomorphic characters, respectively.

Holomorphic characters ϕ : B0 → C∗ drop to B0/[B0, B0], the quo-
tient of B0 modulo its commutator. Note that B0 contains T , the com-
plexification of the maximal torus TR. One can show that the inclusion
T ↪→ B0 induces an isomorphism T ! B0/[B0, B0]. Thus B0 and T have
the same group of holomorphic characters. On the other hand,{

holomorphic
characters of T

}
! T̂R (30)

by restriction from T to its compact real form TR (6). Combining these
isomorphisms and identifying the dual group T̂R with the weight lattice
Λ as usual, we get a canonical isomorphism{

group of holomorphic G-equivariant
line bundles over X

}
! Λ . (31)
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We write Lλ for the line bundle corresponding to λ ∈ Λ under this
isomorphism.

The action of G on X and Lλ determines a holomorphic, linear action
on the space of global sections H0(X,O(Lλ)) and, by functorality, also
on the higher cohomology groups Hp(X,O(Lλ)), p > 0. These groups
are finite dimensional since X is compact. The Borel-Weil-Bott theorem
describes the resulting representations of the compact real form UR ⊂ G

and, in view of (6), also as holomorphic representations of G.

Theorem 2.11 (Borel-Weil [32]) If λ is a dominant weight, the rep-
resentation of UR on H0(X,O(Lλ)) is irreducible, of highest weight λ,
and Hp(X,O(Lλ)) = 0 for p > 0. If λ ∈ Λ fails to be dominant,
H0(X,O(Lλ)) = 0.

In particular the theorem provides a concrete, geometric realization of
every finite dimensional irreducible representation of UR. The description
of H0(X,O(Lλ)) can be deduced from the theorem of the highest weight,
and the vanishing of the higher cohomology groups is a consequence of
the Kodaira vanishing theorem.

Bott [9] extended the Borel-Weil theorem by identifying the higher
cohomology groups as representations of UR. The description involves

ρ =
1
2

∑
α∈Φ+

α ∈ it∗
R

. (32)

Since Φ ⊂ Λ, 2ρ is evidently a weight. In fact,

L−2ρ = canonical bundle of X (33)

as can be shown quite easily. In general, ρ itself need not be a weight;
if not a weight, it can be made a weight by going to a twofold covering
group. Geometrically this means that the canonical line bundle of X

has a square root, possibly as a G-equivariant holomorphic line bundle,
and otherwise as an equivariant holomorphic line bundle for a twofold
covering of G. Whether or not ρ is a weight,

wρ − ρ ∈ Λ for all w ∈ W . (34)

Also, ρ has the following important property:

for λ ∈ Λ , λ is dominant ⇐⇒ λ + ρ is dominant regular. (35)

It follows that for λ ∈ Λ, if λ+ρ is regular, there exists a unique w ∈ W

which makes w(λ + ρ) dominant regular, and for this w, w(λ + ρ)− ρ is
a dominant weight.
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Theorem 2.12 (Borel-Weil-Bott) If λ ∈ Λ and if λ + ρ is singular,
then

Hp(X,O(Lλ)) = 0 for all p ∈ Z.

If λ + ρ is regular, let w be the unique element of W such that w(λ + ρ)
is dominant, and define p(λ) = #{α ∈ Φ+ | (λ + ρ, α) < 0}. In this
situation,

Hp(X,O(Lλ)) =


is non-zero, irreducible, of highest

weight w(λ + ρ)− ρ if p = p(λ);

0 if p 
= p(λ).

The description of the highest weight as w(λ + ρ) − ρ – rather than
wλ, for instance – makes the statement compatible with Serre duality,
as it has to be.

Bott proved this result by reducing it to the Borel-Weil theorem. The
mechanism is a spectral sequence which relates the cohomology groups
of line bundles Lλ, Ls(λ+ρ)−ρ, corresponding to parameters related by a
so-called simple Weyl reflection s ∈ W [9]. An outline of Bott’s argument
can be found in [7].

The Borel-Weil theorem alone suffices to realize all irreducible repre-
sentations of UR. Bott’s contribution is important for other reasons. At
the time, it made it possible to compute some previously unknown coho-
mology groups of interest to algebraic geometers. The Borel-Weil-Bott
theorem made the flag varieties test cases for the fixed point formula
for the index of elliptic operators. In representation theory, the theorem
gave the first indication that higher cohomology groups might be use-
ful in constructing representations geometrically. That turned out to be
the case, for the representations of the discrete series of a non-compact
reductive group, for example.
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Representations of Reductive Lie Groups

We now return to the case of a not-necessarily-compact, connected, lin-
ear reductive group GR. The notation of sections 1.2-3 applies. In par-
ticular, KR ⊂ GR denotes a maximal compact subgroup, and g is the
complexified Lie algebra of GR.

3.1 Notions of Continuity and Admissibility,
KR-finite and C∞ Vectors

Interesting representations of noncompact groups are typically infinite
dimensional. To apply analytic and geometric methods, it is necessary to
have a topology on the representation space and to impose an appropri-
ate continuity condition on the representation in question. In the finite
dimensional case, there is only one “reasonable” topology and continuity
hypothesis, but in the infinite dimensional case, choices must be made.
One may want to study both complex and real representations. There
is really no loss in treating only the complex case, since one can com-
plexify a real representation and regard the original space as an R-linear
subspace of its complexification.

We shall consider representations on complete locally convex Haus-
dorff topological vector spaces over C. That includes complex Hilbert
spaces, of course. Unitary representations are of particular interest, and
one might think that Hilbert spaces constitute a large enough universe of
representation spaces. It turns out, however, that even the study of uni-
tary representations naturally leads to the consideration of other types
of topological spaces, such as Fréchet spaces and DNF spaces. Most an-
alytic arguments depend on completeness and the Hausdorff property.

294
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Local convexity is required to define the integral of vector-valued func-
tions, which is a crucial tool in the study of representations of reductive
groups – see (36), for example.

Let Aut(V ) denote the group of continuous, continuously invertible,
linear maps from a complete locally convex Hausdorff topological vector
space V to itself; we do not yet specify a topology on this group. There
are at least four reasonable notions of continuity one could impose on a
homomorphism GR → Aut(V ) :

a) continuity: the action map GR × V → V is continuous, relative to
the product topology on GR × V ;

b) strong continuity: for every v ∈ V , g �→ π(g)v is continuous as
map from GR to V ;

c) weak continuity: for every v ∈ V and every ϕ in the continuous
linear dual space V ′, the complex-valued function g �→ 〈ϕ, π(g)v〉 is
continuous;

d) continuity in the operator norm, which makes sense only if V is
a Banach space; in that case, Aut(V ) can be equipped with the
norm topology, and continuity in the operator norm means that
π : GR → Aut(V ) is a continuous homomorphism of topological
groups.

Remark 3.1 The following implications hold for essentially formal rea-
son:

continuity =⇒ strong continuity =⇒ weak continuity ,

and if V is a Banach space,

continuity in the operator norm =⇒ continuity .

Also, if V is a Banach space,

continuity ⇐⇒ strong continuity ⇐⇒ weak continuity .

In this chain of implications, strong continuity =⇒ continuity follows
relatively easily from the uniform boundedness principle, but the impli-
cation weak continuity =⇒ strong continuity is more subtle – details can
be found in [37].

Example 3.2 The translation action of (R,+) on Lp(R) is continuous
for 1 ≤ p < ∞, but not continuous in the operator norm; for p = ∞
the translation action fails to be continuous, strongly continuous, even
weakly continuous.
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Continuity in the operator norm is too much to ask for – most of the
representations of interest involve translation. Thus, from now on, “rep-
resentation” shall mean a continuous – continuous in the sense described
above – linear action π : GR → Aut(V ) on a complete, locally convex
Hausdorff space V . If π is continuous, the dual linear action of the topo-
logical dual space V ′, equipped with the strong dual topology1, need not
be continuous. However, when V is a reflexive Banach space, V and V ′

play symmetric roles in the definition of weak continuity; in this case,
the dual action is also continuous, so there exists a “dual representation”
π′ of GR on the dual Banach space V ′.

An infinite dimensional representation (π, V ) typically has numerous
invariant subspaces V1 ⊂ V , but the induced linear action of GR on V/V1

is a purely algebraic object unless V/V1 is Hausdorff, i.e., unless V1 ⊂ V

is a closed subspace. For this reasons, the existence of a non-closed in-
variant subspace should not be regarded as an obstacle to irreducibility:
(π, V ) is irreducible if V has no proper closed GR-invariant subspaces. A
representation (π, V ) has finite length if every increasing chain of closed
GR-invariant subspaces breaks off after finitely many steps. One calls
a representation (π, V ) admissible if dimR HomKR

(U, V ) < ∞ for ev-
ery finite-dimensional irreducible representation (τ, U) of KR. Informally
speaking, admissibility means that the restriction of (π, V ) to KR con-
tains any irreducible KR-representation only finitely often.

Theorem 3.3 (Harish-Chandra [15]) Every irreducible unitary rep-
resentation (π, V ) of GR is admissible.

Harish-Chandra proved this theorem for a larger class of reductive
Lie groups, not assuming linearity. Godement [12] gave a simplified,
transparent argument for linear groups. Atiyah’s lecture notes [1] include
Godement’s argument and many related results.

Heuristically, admissible representations of finite length constitute the
smallest class that is invariant under “standard constructions” (in a very
wide sense!) and contains the irreducible unitary representations. One
should regard inadmissible irreducible representations as exotic. Indeed,
the first example of an inadmissible irreducible representation on a Ba-
nach space – a representation of the group GR = SL(2, R) – is relatively
recent [33], and depends on a counterexample to the invariant subspace
problems for Banach spaces. All irreducible representations which have

1 In the case of a Banach space, this is the dual Banach topology; for the general
case, see [34], for example.
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come up naturally in geometry, differential equations, physics, and num-
ber theory are admissible.

Definition 3.4 Let (π, V ) be a representation of GR. A vector v ∈ V is

a) KR-finite if v lies in a finite-dimensional KR-invariant subspace;
b) a C∞ vector if g �→ π(g)v is a C∞ map from GR to V ;
c) in the case of a Banach space V only, an analytic vector, if g �→
π(g)v is a Cω map (Cω means real analytic);

d) a weakly analytic vector if, for every ϕ ∈ V ′, the complex valued
function g �→ 〈ϕ, π(g)v〉 is real analytic.

All reasonable notions of a real analytic V -valued map agree when V

is a Banach space, but not for other locally convex topological vector
spaces. That is the reason for defining the notion of an analytic vector
only in the Banach case. Surprisingly perhaps, even weakly real analytic
functions with values in a Banach space are real analytic in the usual
sense, i.e., locally representable by absolutely convergent vector valued
power series – see [24, appendix] for an efficient argument. In the Banach
case, then, the notions of an analytic vector and of a weakly analytic
coincide; for other representations, the former is not defined, but the
latter still makes sense.

As a matter of self-explanatory notation, we write VKR−finite for the
space of KR-finite vectors in V .

Theorem 3.5 (Harish-Chandra [15]) If (π, V ) is an admissible rep-
resentation,

a) VKR−finite is a dense subspace of V ;
b) every v ∈ VKR−finite is both a C∞ vector and a weakly analytic
vector.

Let us sketch the proof. For every f ∈ Cc(GR) = space compactly
supported continuous functions on GR, the operator valued integral

π(f) ∈ End(V ) , π(f)v =
∫

GR

f(g)π(g) v dg ( v ∈ V ), (36)

is well defined and convergent. If f ∈ C∞
c (GR), for any v ∈ V , π(f)v is a

C∞ vector, as was first observed by Gȧrding. When f = fn runs through
an “approximate identity” in C∞

c (GR), the sequence π(fn)v converges to
v. This much establishes Gȧrding’s theorem – the space of C∞ vectors
is dense in V . In analogy to the operators π(f), one can also define π(h)
for h ∈ C(KR). Because of the Stone-Weierstrass theorem, the space of
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left KR-finite functions is dense in C(KR). Letting h = hn run through
an approximate identity in C(KR), consisting of left KR-finite functions
hn, one can approximate any v ∈ V by the sequence of vectors π(hn)v,
which are all KR-finite. This proves the density of the KR-finite vectors.
One can combine this latter argument with Gȧrding’s, to approximate
any v ∈ V by a sequence of KR-finite C∞ vectors; when v transforms
according to a particular irreducible finite dimensional representation τ

of KR, one can also make the approximating sequence lie in the space
of τ -isotypic vectors. This space is finite dimensional because of the
admissibility hypothesis. The density of the subspace of τ -isotypic C∞

vectors in the space of all τ -isotypic vectors therefore implies that all τ -
isotypic vectors are C∞ vectors, for every τ , so all KR-finite vectors are
C∞ vectors. The functions g �→ 〈ϕ, π(g)v〉, for v ∈ VKR−finite and ϕ ∈ V ′,
satisfy elliptic differential equations with Cω coefficients, which implies
they are real analytic. Thus all KR-finite vectors are weakly analytic, as
asserted by the theorem.

The theorem applies in particular to KR, considered as maximal com-
pact subgroup of itself. Finite dimensional subspaces are automatically
closed, so the density of KR-finite vectors forces any infinite dimensional
representation (π, V ) of KR to have proper closed invariant subspaces.
In other words,

Corollary 3.6 Every irreducible representation of KR is finite dimen-
sional.

3.2 Harish-Chandra Modules

We continue with the notation of the previous section, but (π, V ) will
now specifically denote an admissible representation of GR, and later
an admissible representation of finite length. We write VKR−finite for the
space of KR-finite vectors, and V ∞ for the space of C∞ vectors. The
latter is a GR-invariant subspace of V, which contains the former as
KR-invariant subspace; both are dense in V . The Lie algebra gR acts
on V ∞ by differentiation, and we extend this action by C-linearity to
the complexified Lie algebra g on V ∞ – equivalently, V ∞ has a natural
structure of module over U(g), the universal enveloping algebra of g . One
might think that the U(g)-module V ∞ is the right notion of infinitesimal
representation attached to the global representation (π, V ). It has a very
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serious drawback, however: except in the finite dimensional case, V ∞

may be highly reducible as U(g)-module even if (π, V ) is irreducible.
The first hint of a solution to this problem appeared in Bargmann’s

description of the irreducible unitary representations of SL(2, R) [2].
Later formalized and developed by Harish-Chandra, it starts with the
observation that

VKR−finite is a U(g)− submodule of V ∞ . (37)

Indeed, the action map U(g) ⊗ VKR−finite → V ∞ is KR-invariant when
KR acts on U(g) via the adjoint action and on V and its subspaces via π.
The image of the action map is therefore exhausted by finite dimensional,
KR-invariant subspaces; in other words, the image of this action map lies
in VKR−finite.

Finite dimensional representations of the compact Lie group KR ex-
tend naturally to its complexification (6). By definition, VKR−finite is the
union of finite dimensional KR-invariant subspaces, so the KR-action
on VKR−finite extends naturally to the complexification K of KR. Even
though VKR−finite has no natural Hausdorff topology – it is not closed
in V unless dim V < ∞ – it makes sense to say that K acts holomor-
phically on VKR−finite : like KR, K acts locally finitely, in the sense that
every vector lies in a finite dimensional invariant subspace; the invariant
finite dimensional subspaces do carry natural Hausdorff topologies, and
K does act holomorphically on them. The Lie algebra k has two natu-
ral actions on VKR−finite, by differentiation of the K-action, and via the
inclusion k ⊂ g and the U(g)-module structure. These two actions co-
incide, essentially by construction. To simplify the notation, we denote
the actions on VKR−finite by juxtaposition. With this convention,

k (ξv) = (Ad k ξ)(kv), ∀k ∈ K, ξ ∈ U(g), v ∈ VKR−finite, (38)

as can be deduced from the well-known formula

exp(Ad k ξ) = k exp(ξ)k−1,

for ξ ∈ gR, k ∈ KR.

Definition 3.7 A (g,K)-module is a complex vector space M , equipped
with the structure of U(g)-module and with a linear action of K such
that:

a) The action of K is locally finite, i.e., every m ∈ M lies in a finite
dimensional K-invariant subspace on which K acts holomorphically;
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b) when the K-action is differentiated, the resulting action of the
Lie algebra k agrees with the action of k on M via k ↪→ g and the
U(g)-module structure.

c) the identity (38) holds for all k ∈ K , ξ ∈ U(g) , v ∈ M .

A Harish-Chandra module is a (g,K)-module M which is finitely gen-
erated over U(g) and admissible, in the sense that every irreducible
K-representation occurs in M with finite multiplicity.

The discussion leading up to the definition shows that the space of
KR-finite vectors VKR−finite of an admissible representation (π, V ) is an
admissible (g,K)-module. Very importantly,

the correspondence Ṽ �→ ṼKR−finite sets up a bijection

{closed GR-invariant subspaces Ṽ ⊂ V } ↔
{(g,K)-submodules ṼKR−finite ⊂ VKR−finite} ,

(39)

as follows from the weakly analytic nature of KR-finite vectors (3.5).
When (π, V ) is not only admissible but also of finite length, every as-
cending chain of (g,K)-submodules of VKR−finite breaks off eventually.
Because of the Nötherian property of U(g), that implies the finite gene-
ration of VKR−finite over U(g). In short, the space of KR-finite vectors
VKR−finite of an admissible representation of finite length is a Harish-
Chandra module. The statement (39) also implies that (π, V ) is irre-
ducible if and only if VKR−finite is irreducible as (g,K)-module. This
property of VKR−finite makes it the appropriate notion of the infinitesi-
mal representation corresponding to (π, V ).

From now on, we write HC(V ) for the space of KR-finite vectors
of an admissible representation (π, V ) of finite length and call HC(V )
the Harish-Chandra module of π. The next statement formalizes the
properties of Harish-Chandra modules we have mentioned so far:

Theorem 3.8 (Harish-Chandra [15]) The association V �→ HC(V )
= VKR−finite establishes a covariant, exact, faithful functor{category of admissible GR-representations

of finite length and GR-equivariant maps

}
HC−→

{category of Harish-Chandra modules
and (g,K)-equivariant linear maps

}
.

Definition 3.9 Two finite length admissible representations (πi, Vi),
i = 1, 2, are infinitesimally equivalent if HC(V1) ! HC(V2).
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Loosely speaking, infinitesimal equivalence means that the two rep-
resentations are the same except for the choice of topology. A concrete
example may be helpful. The group

GR = SU(1, 1) =
{(

a b

b̄ ā

) ∣∣∣∣ a, b ∈ C , |a|2 − |b|2 = 1
}

(40)

has G = SL(2, C) as complexification, and is conjugate in G to SL(2, R).
As maximal compact subgroup, we choose the diagonal subgroup, in
which case its complexification also consists of diagonal matrices:

KR =
{

kθ =
(

eiθ 0
0 e−iθ

) ∣∣∣∣ θ ∈ R
}

∼= U(1) ,

K =
{(

a 0
0 a−1

) ∣∣∣∣ a ∈ C∗
}

∼= C∗ .

(41)

By linear fractional transformations, SU(1, 1) acts transitively on D =
open unit disc in C , with isotropy subgroup KR at the origin. Left
translation on D ∼= SU(1, 1)/KR induces a linear action � of SU(1, 1)
on C∞(D),

(�(g)f)(x) =def f(g−1 · z), g ∈ SU(1, 1), f ∈ C∞(D), z ∈ D, (42)

and on the subspace

H2(D) =def
space of holomorphic functions on D

with L2 boundary values,
(43)

topologized by the inclusion H2(D) ↪→ L2(S1). One can show that both
actions are representations, i.e., they are continuous with respect to the
natural topologies of the two spaces.

Recall the definition of kθ in (41). Since �(kθ)zn = e−2inθzn, f ∈
H2(D) is KR-finite if and only if f has a finite Taylor series at the
origin, i.e., if and only if f is a polynomial:

H2(D)KR−finite = C[z] . (44)

In particular, (�,H2(D)) is admissible. This representation is not irre-
ducible, since H2(D) contains the constant functions C as an obviously
closed invariant subspace. It does have finite length; in fact, the quotient
H2(D)/C is irreducible, as follows from a simple infinitesimal calculation
in the Harish-Chandra module HC(H2(D)) = C[z].

Besides V = H2(D), the action (42) on each of the following spaces,
equipped with the natural topology in each case, defines a representation
of SU(1, 1):
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a) Hp(D) = space of holomorphic functions on D with Lp boundary
values, 1 ≤ p ≤ ∞;

b) H∞(D) = space of holomorphic functions on D with C∞ bound-
ary values;

c) H−∞(D) = space of holomorphic functions on D with distribution
boundary values;

d) Hω(D) = space of holomorphic functions on D with real analytic
boundary values;

e) H−ω(D) = space of all holomorphic functions on D.

Taking boundary values, one obtains inclusions Hp(D) ↪→ Lp(S1), which
are equivariant with respect to the action of SU(1, 1) on Lp(S1) by lin-
ear fractional transformations. The latter fails to be continuous when
p = ∞, but that is not the case for the image of H∞(D) in L∞(S1).
Essentially by definition, every holomorphic function on D has hyper-
function boundary values. This justifies the notation H−ω(D); the su-
perscript −ω stands for hyperfunctions. One can show that H∞(D) is
the space of C∞ vectors for the Hilbert space representation (�,H2(D)).

Arguing as in the case of H2(D), one finds that the representation
� of SU(1, 1) on each of the spaces a)-e) has C[z] as Harish-Chandra
module, so all of them are infinitesimally equivalent. This is the typical
situation, not just for SU(1, 1), but for all groups GR of the type we are
considering: every infinite dimensional admissible representation (π, V )
of finite length lies in an infinite family of representations, all infinitesi-
mally equivalent, but pairwise non-isomorphic. In the context of unitary
representations the situation is different:

Theorem 3.10 (Harish-Chandra [15]) If two irreducible unitary
representations are infinitesimally equivalent, they are isomorphic as
unitary representations.

If we were dealing with finite dimensional representations, this would
follow from an application of Schur’s Lemma. Schur’s lemma, it should
be recalled, is a consequence of the existence of eigenvalues of endo-
morphisms of finite dimensional vector spaces over C. In the setting of
Harish-Chandra modules, endomorphisms are in particular KR-invari-
ant, and must therefore preserve subspaces on which KR acts according
to any particular irreducible representation of KR. These subspaces are
finite dimensional, and their direct sum, over all irreducible representa-
tions of KR up to equivalence, is the Harish-Chandra module in question.
Thus endomorphisms of Harish-Chandra modules can be put into Jor-
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dan canonical form, even though the modules are infinite dimensional.
In short, there exists a version of Schur’s lemma for Harish-Chandra
modules; it plays the crucial role in the proof of the theorem.

According to results of Casselman [10], every Harish-Chandra module
M has a globalization, meaning an admissible GR-representation (π, V )
of finite length, such that HC(V ) = M . That makes the following two
problems equivalent:

a) Classify irreducible admissible representations of GR, up to in-
finitesimal equivalence;

b) Classify irreducible Harish-Chandra modules for the pair (g,K).

Under slight additional hypotheses, problem b) has been solved by Lang-
lands [25], Vogan–Zuckerman [36], and Beilinson–Bernstein [3, 17], by
respectively analytic, algebraic, and geometric means. The three solu-
tions give formally different answers, which can be related most easily
in terms of the Beilinson–Bernstein construction [18]. We shall discuss
these matters in section 4.

A Harish-Chandra module corresponds to an irreducible unitary rep-
resentation if and only if it carries an invariant, positive definite her-
mitian form – invariant in the sense that the action of KR preserves it,
and that every ξ ∈ g acts as a skew-hermitian transformation. Whether
a given irreducible Harish-Chandra module carries an invariant, non-
trivial, possibly indefinite hermitian form is easy to decide: the Harish-
Chandra module needs to be conjugate-linearly isomorphic to its own
dual. When a nontrivial invariant hermitian form exists, it is unique up
to scaling. The classification of the irreducible unitary representations
of GR comes down to determining which invariant hermitian forms have
a definite sign. Many results in this direction exist, most of them due
to Vogan and Barbasch, but a general answer is not in sight, not even a
good general conjecture.

We mentioned already that every Harish-Chandra module M has a
globalization. It is natural to ask if a globalization can be chosen in a
functorial manner – in other words, whether the functor HC in Theo-
rem 3.8 has a right inverse. Such functorial globalizations do exist. Four
of them are of particular interest, the C∞ and C−∞ globalizations of
Casselman-Wallach [11, 35], as well as the minimal globalization and
the maximal globalization [29, 22]. All four are topologically exact, i.e.,
they map exact sequences of Harish-Chandra modules into exact se-
quences of representations in which every morphism has closed range.
The main technical obstacle in constructing the canonical globalizations
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is to establish this closed range property. In the case of an admissible
representation (π, V ) of finite length, on a reflexive Banach space V ,
the C∞ globalization of HC(V ) is topologically isomorphic to the space
of C∞ vectors V ∞. Similarly the minimal globalization is topologically
isomorphic to the space of analytic vectors V ω; both have very natu-
rally defined topologies. The other two constructions are dual to these:
the C−∞ globalization is isomorphic to ((V ′)∞)′, the strong dual of the
space of C∞ vectors of the dual representation (π′, V ′), and the maximal
globalization is similarly isomorphic to ((V ′)ω)′. In the case of the ear-
lier example of (�,H2(D)), the four globalizations of HC(H2(D)) can be
identified with H∞(D), Hω(D), H−∞(D), and H−ω(D), respectively.



4

Geometric Constructions of Representations

In this section we shall freely use the notational conventions of the pre-
ceding sections. To simplify the discussion, we suppose

the complexification G of GR is connected. (45)

That is the case for GR = GL(n, R), for example: the group itself is not
connected, but it does have a connected complexification. The hypothesis
(45) in particular implies:

for each g ∈ GR , Ad g : g −→ g is an inner automorphism. (46)

The latter condition is important; without it irreducible Harish-Chandra
modules need not have infinitesimal characters – see definition (4.2) be-
low. From a technical point of view, the weaker condition (46) suffices
entirely for our purposes, at the cost of additional terminology and ex-
planations. We assume (45) only to avoid these. The compact real form
UR ⊂ G is then also connected, as we had assumed in section 2.

Recall the notion of a Cartan subalgebra of the complex reductive Lie
algebra g : a maximal abelian subalgebra h ⊂ g such that Ad ξ : g →
g is diagonalizable, for every ξ ∈ h. Any two Cartan subalgebras are
conjugate under the adjoint action of G. The complexified Lie algebra
t of a maximal torus TR ⊂ UR is a particular example of a Cartan
subalgebra. Since G acts on the set of compact real forms by conjugation,
every Cartan subalgebra of g arises as the complexified Lie algebra of
a maximal torus in some compact real form of G. In particular the
discussion in sections 2.1-2 applies to any Cartan subalgebra. With t

and TR ⊂ UR as above, there are two potential notions of Weyl group,
namely the “compact Weyl group” W (UR, TR) = NUR

(TR)/TR and the
“complex Weyl group” W (G,T ) = NG(T )/T , with T = complexification

305
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of TR. They coincide, in fact, and we shall denote both by the symbol
W .

4.1 The Universal Cartan Algebra and
Infinitesimal Characters

By definition, the flag variety X of the complex reductive Lie algebra g

parameterizes the Borel subalgebras of g :

X " x ←→ bx ⊂ g . (47)

Define

hx = bx/[bx, bx]. (48)

This quotient is independent of x in the following equivalent senses:

a) if g ·x = y for some g ∈ G and x, y ∈ X, the map hx → hy induced
by Ad g : bx → by depends only on x and y, not on the particular
choice of g ;

b) hx is the fiber at x of a canonically flat holomorphic vector bundle
over X;

c) let t ⊂ g be a Cartan subalgebra and Φ+ ⊂ Φ(g, t) a positive
root system. Then b0 = t⊕ (⊕α∈Φ+ g−α) is a Borel subalgebra, with
[b0, b0] = ⊕α∈Φ+ g−α. The resulting isomorphism h0 = b0/[b0, b0] ∼=
t depends only on the choice of Φ+.

We write h instead of hx to signify independence of x. This is the
universal Cartan algebra. It is not a subalgebra of g, but h is canonically
isomorphic to any ordered Cartan subalgebra, i.e., to any Cartan subalge-
bra t ⊂ g with a specified choice of positive root system Φ+. We use the
canonical isomorphism between h and any ordered Cartan subalgebra
(t,Φ+) to transfer from t to h the weight lattice, root system, positive
root system, and Weyl group. In this way we get the universal weight
lattice Λ ⊂ h∗, the universal root system Φ ⊂ Λ, the universal positive
root system Φ+ ⊂ Φ, and the universal Weyl group W , which acts on h

and dually on h∗, leaving invariant both Λ and Φ. Moreover, there ex-
ists a W -invariant, positive inner product (., .) on the R-linear subspace
R⊗ZΛ which depends on the choice of S in (20), but on nothing else. Go-
ing back to (31), we see that the parametrization of the G-equivariant
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holomorphic line bundles Lλ → X in terms of λ becomes completely
canonical when we regard λ as lying in universal weight lattice Λ.

We can use these ideas to characterize the so-called Harish-Chandra
isomorphism. Let Z(g) denote the center of the universal enveloping
algebra U(g), and S(h)W the algebra of W -invariants in the symmetric
algebra of h, or what comes to the same, the algebra of W -invariant
polynomial functions on h∗. By differentiation of the G-action, g acts
on holomorphic sections of Lλ as a Lie algebra of vector fields. This
induces an action of U(g), and therefore also of Z(g), on the sheaf of
holomorphic sections O(Lλ).

Theorem 4.1 (Harish-Chandra [14]) There exists a canonical iso-
morphism

γ : Z(g) ∼−→ S(h)W

such that, for any λ ∈ Λ, any ζ ∈ Z(g) acts on the sheaf of holomorphic
sections O(Lλ) as multiplication by the scalar γ(ζ)(λ + ρ).

In this statement, γ(ζ)(λ + ρ) refers to the value of the W -invariant
polynomial function γ(ζ) at the point λ + ρ. More generally this makes
sense for elements of h∗ : every λ ∈ h∗ determines a character1

χλ : Z(g) −→ C , χλ(ζ) = γ(z)(ζ). (49)

In view of Harish-Chandra’s theorem, χλ = χµ if and only if λ = w · µ
for some w ∈ W , and every character of Z(g) is of this type.

Definition 4.2 One says that a Harish-Chandra module M has an in-
finitesimal character if Z(g) acts on M via a character.

When the infinitesimal character exists, it can of course be expressed
as χλ, for some λ ∈ Λ. Applying Schur’s lemma for Harish-Chandra
modules, as was explained in section 3.2, one finds that every irreducible
Harish-Chandra module does have an infinitesimal character.

4.2 Twisted D-modules

The flag variety X is projective, and thus in particular has an algebraic
structure. The complex linear reductive group G has an algebraic struc-
ture as well, and the action of G on X is algebraic. The G-equivariant

1 in the present context, “character” means algebra homomorphism into the one
dimensional algebra C.
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line bundles Lλ → X are associated to algebraic characters of the struc-
ture group of the algebraic principal bundle G → G/B, so they, too,
have algebraic structures, and G acts algebraically also on these line
bundles. In the following, we equip X with the Zariski topology, and all
sheaves are understood to be sheaves relative to the Zariski topology. In
the current setting, O denotes the sheaf of algebraic functions on X and
O(Lλ) the sheaf of algebraic sections of Lλ.

The locally defined linear differential operators on X with algebraic
coefficients constitute a sheaf of algebras, customarily denoted by D. By
definition, D acts on O; in more formal language, O is a sheaf of modules
over the sheaf of algebras D. For λ ∈ Λ,

Dλ = O(Lλ)⊗O D ⊗O O(L−λ) (50)

is also a sheaf of algebras, the sheaf of linear differential operators acting
on sections of Lλ. It is a so-called twisted sheaf of differential operators.
Since we can think of O as differential operators of degree zero, there
exists a natural inclusion O ↪→ Dλ. By differentiation of the G-action,
every ξ ∈ g determines a globally defined first order differential operator
acting on O(Lλ). In this way we get a canonical homomorphism of Lie
algebras

g −→ ΓDλ = H0(X,Dλ) ; (51)

here, as usual, we give the associative algebra ΓDλ the additional struc-
ture of a Lie algebra by taking commutators of differential operators.
When g is semisimple, this morphism is injective. In any case, it induces

U(g) −→ ΓDλ = H0(X,Dλ) , (52)

a homomorphism of associative algebras.
Until now we have supposed that λ lies in the weight lattice. How-

ever, there is a natural way to make sense of the sheaf of algebras Dλ

for any λ ∈ h∗. In terms of local coordinates, the twisting operation
(50) involves taking logarithmic derivatives, so the lattice parameter λ

occurs polynomially; one can therefore let it take values in h∗. With this
extended definition, the natural inclusion O ↪→ Dλ and the morphism
(52) exist just as before.

Theorem 4.3 (Beilinson-Bernstein [3]) For any λ ∈ h∗, the mor-
phism (52) induces

Uλ+ρ =def U(g)/ideal generated by {ζ − χλ+ρ(ζ) | ζ ∈ Z(g)} ∼−→ ΓDλ.
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The higher cohomology groups of Dλ vanish: Hp(X,Dλ) = 0 for p > 0 .

Note that any Uλ+ρ-module can be regarded as a U(g)-module with
infinitesimal character χλ+ρ, and vice versa. Following the usual custom,
we shall use the terminology “Dλ-module” as shorthand for “sheaf of
Dλ-modules”. A Dλ-module is said to be coherent if it is coherent over
the sheaf of algebras Dλ – in other words, if locally around any point,
it can be presented as the quotient of a free Dλ-module of finite rank,
modulo the image of some other free Dλ-module of finite rank. Theorem
4.3 makes it possible to define the two functors{

category of finitely
generated Uλ+ρ-modules

} ∆−→←−
Γ

{
category of

coherent Dλ-modules

}
, (53)

with Γ = H0(X, · ) = global sections functor, and

∆M = Dλ ⊗Uλ+ρ
M ; (54)

∆ is called the “localization functor”. Because of (4.1), the category on
the left in (53) depends only on the W -orbit of λ + ρ ; the category on
the right, on the other hand, depends on λ itself.

Recall the definition of the W -invariant inner product (·, ·) on the
real form R⊗Z Λ ⊂ h∗ in section 4.1. We shall use the same notation to
denote the bilinear – not hermitian! – extension of the inner product to
the complex vector space h∗. In analogy to our earlier terminology we
call λ ∈ h∗ regular if (λ, α) 
= 0 for all α ∈ Φ, and otherwise singular.

Definition 4.4 An element λ ∈ h∗ is said to be integrally dominant if
2 (λ,α)

(α,α) /∈ Z<0 for all α ∈ Φ+.

Remark 4.5 For λ ∈ Λ these quotients are integers, and for a generic
λ ∈ h∗ all of them are non-integral. In every case there exists w ∈ W

such that w(λ + ρ) is integrally dominant.

Theorem 4.6 (Beilinson-Bernstein [3]) Let S be a coherent Dλ-
module.

A) If λ + ρ is integrally dominant and regular, the global sections of
S generate its stalks;

B) If λ + ρ is integrally dominant, then Hp(X,S) = 0 for all p 
= 0.

The conclusion of A) means that the stalk Sx at any x ∈ X is gen-
erated over the ring (Dλ)x by the image of ΓS in Sx. Note the formal
analogy with Cartan’s theorems A and B for coherent analytic sheaves
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on Stein manifolds – see [13], for example. The next statement follows
quite directly from the theorem:

Corollary 4.7 If λ + ρ is integrally dominant and regular, the localiza-
tion functor ∆ defines an equivalence of categories, with inverse functor
Γ.

The hypothesis of regularity is essential. For example, when the
canonical bundle of X has a G-equivariant square root L−ρ, the Borel-
Weil-Bott theorem asserts that the D−ρ-module O(L−ρ) has no non-zero
global sections, nor even non-zero higher cohomology, but −ρ + ρ = 0 is
integrally dominant. A refined version of the corollary does apply when-
ever λ + ρ is integrally dominant but singular. The idea is to construct
a quotient category of the category of coherent Dλ-modules, by dividing
out the subcategory of sheaves with trivial cohomology. The greater sub-
tlety of this situation merely reflects, and even explains, a familiar fact:
in the study of U(g)-modules with singular infinitesimal character, one
encounters difficulties not present in the regular case. The category of
coherent Dλ-modules “knows nothing” about regularity or singularity;
for any µ ∈ Λ,{

category of coherent
Dλ-modules

}
" S

�→ O(Lµ)⊗O S ∈
{

category of coherent
Dλ+µ-modules

}
(55)

defines an equivalence of categories, and µ can always be chosen so as to
make λ+µ+ρ integrally dominant and regular. The existence of sheaves
without cohomology carries sole responsibility for the more complicated
nature of the singular case!

The corollary can be extended in another direction. When λ + ρ fails
to be integrally dominant, the localization functor ∆ becomes an equiv-
alence of categories on the level of derived categories. Heuristically, and
quite imprecisely, that means replacing ΓS by the formal Euler char-
acteristic

∑
p(−1)pHp(X,S). In other words, the derived category of

coherent Dλ-modules is equivalent to the derived category of coherent
Dw(λ+ρ)−ρ-modules, for any w ∈ W . This latter equivalence can be
described geometrically, in terms of Beilinson-Bernstein’s intertwining
functors [4].

The corollary and the first of the two extensions makes it possible
to translate problems about finitely generated U(g)-modules with an
infinitesimal character into problems in algebraic geometry. What are
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advantages to working on the geometric side, rather than directly with
U(g)-modules? For those of us who think geometrically, the geometric
arguments seem far more transparent than their algebraic counterparts.
More importantly, some results on U(g)-modules, which seem inacces-
sible by algebra, have been proved geometrically – the proofs of the
Kazhdan-Lusztig conjectures [3, 5] and of the Barbasch-Vogan conjec-
ture [30] are particular examples.

4.3 Construction of Harish-Chandra Modules

The equivalence of categories (4.7) persists when certain additional in-
gredients are fed in on both sides. In the case of a Harish-Chandra
module M with infinitesimal character χλ+ρ, the algebraic action2 of
the group K on M induces an algebraic action of K on the Dλ-module
∆M . One might think that the admissibility of M puts an additional
restriction on ∆M , but that is not the case: any (g,K)-module with an
infinitesimal character is automatically admissible. By a (Dλ,K)-module
one means a sheaf of Dλ-modules, equipped with an algebraic action of
K that is compatible with the Dλ-structure. Compatibility in the cur-
rent setting is entirely analogous to the earlier notion of compatibility
in the context of (g,K)-module. More precisely, the Lie algebra k acts
on M both via the differentiation of the K-action and via (51) and the
inclusion k ↪→ g. These two actions of k must agree, and the analogue
of (38) must also be satisfied. With these additional ingredients, the
functors ∆ and Γ in (53) induce{

category of Harish-Chandra modules
with infinitesimal character χλ+ρ

}
∆−→←−
Γ

{
category of coherent

(Dλ,K)-modules

}
. (56)

Corollary 4.7 has a counterpart for these restricted functors:

Corollary 4.8 If λ + ρ is integrally dominant and regular, the functor
∆ in (56) defines an equivalence of categories, with inverse functor Γ.

2 All finite dimensional representations of a complex linear reductive group are
algebraic.
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This corollary, too, has refinements that apply when either or both of
the hypotheses of integral dominance and regularity are dropped. Under
an equivalence of categories, irreducible objects correspond to irreducible
objects, hence

Corollary 4.9 If λ + ρ is integrally dominant and regular, the functor
∆ establishes a bijection{irreducible Harish-Chandra modules

with infinitesimal character χλ+ρ

}
∆−→∼

{ irreducible
(Dλ,K)-modules

}
.

If λ+ρ is integrally dominant but singular, ∆ sets up a bijection between
the set of all irreducible Harish-Chandra modules with infinitesimal char-
acter χλ+ρ on the one hand, and the set of irreducible (Dλ,K)-modules
with non-zero cohomology on the other.

This latter corollary describes the irreducible Harish-Chandra mod-
ules in terms of irreducible (Dλ,K)-modules. But how does one con-
struct such sheaves? Two properties of the K-action on X simplify the
problem. First of all,

K acts on X with finitely many orbits. (57)

Since K acts algebraically, these orbits are algebraic subvarieties.
Moreover,

all K-orbits in X are affinely embedded, (58)

which means that they intersect any open affine subset U ⊂ X in an
affine set. As a negative example, we mention CPn−{point}, with n ≥ 2,
which is not affinely embedded in CPn. Such sets do arise as K-orbits
in generalized flag varieties.

We now consider a particular irreducible (Dλ,K)-module S. For ge-
ometric reasons, the support of S must consist of the closure of a single
K-orbit Q. We let ∂Q denote the boundary of Q in X, i.e., ∂Q = (closure
of Q) −Q. The inclusion j : Q ↪→ X factors as a product

j = jo◦jc , with jc : Q ↪→ X−∂Q and jo : X−∂Q ↪→ X ; (59)

note that jc is a smooth closed embedding and j0 an open embedding.
Since S|X−∂Q is K-equivariant, irreducible, and supported on the K-
orbit Q, Lλ must exist at least as a K-equivariant line bundle on the
formal neighborhood of Q in X − ∂Q, even if it does not exist as line
bundle on all of X, and S|X−∂Q must be the Dλ-module direct image
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of OQ(Lλ|Q) under jc – in formal notation,

S|X−∂Q = jc+OQ(Lλ|Q) . (60)

Depending on the orbit Q, this forces certain integrality conditions on
λ; if these integrality conditions do not hold, no irreducible (Dλ,K)-
module can have the closure of Q as support. The Dλ-module direct
image jc+OQ(Lλ|Q) is easy to describe because jc is a smooth closed
embedding: its sections can be expressed as normal derivatives, of any
order, applied to sections of Lλ|Q over Q. Since S is irreducible,

S ↪→ jo+(S|X\∂Q) = jo+ ◦ jc+OQ(Lλ|Q) = j+OQ(Lλ|Q) . (61)

In general, constructing the D-module direct image under an open em-
bedding requires passage to the derived category. In our situation, be-
cause of (58), the direct image exists as a bona fide Dλ-module. One
calls j+OQ(Lλ|Q) the standard sheaf corresponding to the orbit Q, the
parameter λ ∈ h∗, and one other simple datum that is necessary to
pin down the meaning of Lλ|Q. The steps we outlined exhibit the ir-
reducible (Dλ,K)-module S as the unique irreducible subsheaf of the
standard sheaf j+OQ(Lλ|Q).

At one extreme, the irreducible subsheaf S may coincide with the
standard sheaf j+OQ(Lλ|Q) in which it lies, and at the opposite ex-
treme, it may be much smaller. This phenomenon is governed by the
behavior of sections near ∂Q. Very roughly, if j+OQ(Lλ|Q) has sections
with various degrees of regularity along ∂Q, the unique irreducible sub-
sheaf S consists of the “most regular” sections; when all sections have
the same degrees of regularity along ∂Q, the standard sheaf j+OQ(Lλ|Q)
is irreducible, hence equal to its unique irreducible subsheaf S. The stan-
dard sheaf is more tractable than S. In the crucial situation, when λ+ρ

is integrally dominant, one understands H0(X, j+OQ(Lλ|Q)), the stan-
dard module corresponding to the given set of data, quite well [17]. The
space of sections H0(X,S) is the unique irreducible submodule of the
standard module – or zero, which can happen only when λ + ρ is sin-
gular. In view of (4.9), these results constitute a classification of the
irreducible Harish-Chandra modules with infinitesimal character χλ+ρ –
the Beilinson-Bernstein classification.

Two other classification schemes, due to Landglands [25] and Vogan-
Zuckerman [36], predate Beilinson-Bernstein’s. They, too, exhibit the
irreducible Harish-Chandra modules as unique irreducible submodules,
or dually as unique irreducible quotients, of certain standard modules.
All three classifications obviously describe the same class of objects, but
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it is not clear a priori that the three types of standard modules agree
or are dual to each other. That can be shown most transparently by
geometric arguments [18]. Depending on the interplay between the orbit
Q and the parameter λ, the higher cohomology groups of the standard
sheaf j+OQ(Lλ|Q) may vanish even when part B) of Theorem (4.6) does
not apply directly. One extreme case, with “Q as affine as possible”, leads
to the Langlands classification, the other, with “Q as close to projective
as possible”, to Vogan-Zuckerman’s. The Beilinson-Bernstein situation
lies between these two, and all three can be related via the intertwining
functors we mentioned earlier.

4.4 Construction of GR-representations

Just as one can attach Harish-Chandra modules to K-orbits in the flag
variety, GR-representations arise from GR-orbits. There are finitely many
such orbits, and they are real algebraic subvarieties. We now equip X

with the usual Hausdorff topology – not the Zariski topology, as in the
previous section.

To motivate the discussion, we first look at two special cases. At one
extreme, let us consider a group GR, subject to the usual hypotheses
and the condition (45). We suppose that GR contains a compact Cartan
subgroup, and we fix an open GR-orbit S ⊂ X. As subgroup of G, GR

acts on O(Lλ), the sheaf of holomorphic sections of a G-equivariant line
bundle Lλ. This action induces a natural linear action on the cohomol-
ogy groups Hp(S,O(Lλ)) over the open GR-orbit S. The cohomology
can be computed from the complex of Lλ-valued Dolbeault forms. It
is far from obvious, but the coboundary operator ∂̄ has closed range,
giving the cohomology groups natural Fréchet topologies, with respect
to which GR acts continuously. The resulting representations are admis-
sible, of finite length, with infinitesimal character χλ+ρ. When λ + ρ

is antidominant regular3, the cohomology vanishes except in a single
degree s > 0, and in that degree p = s, Hs(S,O(Lλ)) is a discrete se-
ries representation – more precisely, it is the maximal globalization of
the Harish-Chandra module HC(Vλ+ρ) of a discrete series representation
Vλ+ρ. This construction provides a geometric realization, analogous to
the Borel-Weyl-Bott theorem, of the entire discrete series. The reader
may consult [7] for references and further details.

3 i.e., (λ + ρ, α) < 0 for all α ∈ Φ+.
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At the other extreme, we suppose that S ⊂ X is a closed orbit of a
split group GR; here “split” means that GR contains a Cartan subgroup
AR such that every a ∈ A0

R
acts with real eigenvalues. Parenthetically we

should remark that noncompact reductive groups GR have finitely many
Cartan subgroups, and may contain both a compact and a split Cartan
subgroup. In the split case, the closed GR-orbit S is necessarily a real
form of the flag variety, i.e., a submanifold such that the holomorphic
tangent space TxX at any x ∈ S contains the tangent space TxS of S as a
real form: TxX = C⊗R TxS. For any λ ∈ Λ, GR acts on C−ω(S,Lλ), the
space of hyperfunction sections of Lλ over the real analytic manifold S.
The hyperfunctions on a compact real analytic manifold carry a natural
Fréchet topology. With respect to this topology, GR acts continuously on
C−ω(S,Lλ). The resulting representation is admissible, of finite length,
with infinitesimal character χλ+ρ; it belongs to the – non-unitary, in
general – principal series of GR. Since λ has been confined to the lattice
Λ, only some principal series representations can be obtained this way.
One gets the others by letting λ range over h∗, the dual space of the
universal Cartan, in which case Lλ still exists as GR-equivariant real
analytic line bundle over the closed orbit S. However, for the moment
we still want to suppose λ ∈ Λ, so that Lλ is well defined even as G-
equivariant holomorphic line bundle on X.

At first glance, the cohomology groups Hp(S,O(Lλ)) over an open
GR-orbit S and the space of hyperfunction sections C−ω(S,Lλ) over
a closed orbit of a split group GR might not seem to fit easily into a
common framework. However, both can be expressed as Ext groups,

Hp(S,O(Lλ)) = Extp(j!CS ,O(Lλ)) if S is an open GR-orbit,

C−ω(S,Lλ) = Extn(j!CS ,O(Lλ)) if S is closed, GR split,
(62)

and n = dimC X; in both cases j denotes the inclusion S ↪→ X, CS

the constant sheaf on S with fiber C, and j!CS the sheaf on X obtained
by taking the direct image with proper supports. One can describe the
Ext groups equivalently as the right derived functors of Hom(·, ·) in
the second variable, or the left derived functors in the first variable.
Properly interpreted, (62) represents only the extreme cases of a general
construction [31], which attaches GR-representations to all GR-orbits. In
this way one obtains the maximal globalizations of all standard modules
in the Beilinson-Bernstein construction.

Kashiwara [20] observed that the results of [31] could be stated in
more functorial language, conjecturally at least, which would then pro-
duce not just maximal globalizations of standard modules, but of all
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Harish-Chandra modules with an infinitesimal character. Proofs of his
conjectures appear in [22].

In the remainder of this section we briefly outline the conjectures, re-
spectively the results, of [20, 22]. They involve DGR

(X), the bounded GR-
equivariant derived category of Bernstein-Lunts [6]; it is a GR-equivar-
iant version of the bounded derived category Db(ShX) of constructible
sheaves [21]. Let S be a GR-orbit, j : S ↪→ X its inclusion into X, and F
a GR-equivariant local system on S; then j!F , the direct image of F with
proper supports, is a particular object in DGR

(X). Objects of this type
are the basic building blocks, from which the others are put together by
successive extensions.

The sheaf of holomorphic sections O(Lλ), λ ∈ Λ, exists as G-equi-
variant sheaf on X. More generally, for λ ∈ h∗ one can make sense of
it locally, as an infinitesimally g-equivariant “germ of a sheaf” of O-
modules. Collectively these “germs” constitute a G-equivariant twisted
sheaf on X, which we denote by Oλ. Technically, Oλ is not a sheaf on
X, but rather on the principal H-bundle

X̂ = G/[B0, B0] −→ G/B0 ! X ,

with structure group H = B0/[B0, B0]; here H ! (C∗)r, the universal
Cartan group of G, is the connected complex Lie group with Lie algebra
h, and X̂ is called the enhanced flag variety. By definition, local sections
of Oλ are locally defined holomorphic functions on X̂ which transform
under right translation by H according to the multiple-valued function
eλ on H.

Quite analogously one may consider GR-equivariant twisted local sys-
tems on GR-orbits, with twist λ ∈ h∗. These, too, are technically sheaves
on X̂, which transform on the right according to the multiple-valued
function eλ. Whether non-zero twisted local systems, with a particu-
lar twist λ, exist on a particular GR-orbit S depends on the interplay
between λ and the isotropy subgroup (GR)x ⊂ GR at a point x ∈ S.

Just as the the bounded GR-equivariant derived category DGR
(X)

is put together from GR-equivariant local systems by a process of ex-
tensions, the GR-equivariant twisted local systems, with twist λ, are
the basic building blocks of the twisted GR-equivariant derived category
DGR

(X)λ. Let us consider an arbitrary object F ∈ DGR
(X)λ. Neither F

nor Oλ exist as sheaves on X, but both have the same monodromic be-
havior under the right action of H. Thus homomorphisms between these
two twisted sheaves may be regarded as objects on X. More precisely,
the resolutions from which one would compute Ext∗(F ,Oλ) – if both
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arguments were actual sheaves on X – do exist as complexes of sheaves
on X. The global Ext groups

Extp(F ,Oλ) , F ∈ DGR
(X)λ , λ ∈ h∗ , (63)

are therefore well defined, as complex vector spaces with a linear action
of GR.

Theorem 4.10 ([22]) The Ext groups (63) carry natural Fréchet
topologies which make GR act continuously. The resulting representa-
tions are admissible, of finite length, and have infinitesimal character
χλ+ρ . They are the maximal globalizations of their underlying Harish-
Chandra modules. The maximal globalization of any Harish-Chandra
module with infinitesimal character χλ+ρ can be realized in this man-
ner.

For µ ∈ Λ, eµ : H → C∗ is well-defined, not multiple-valued. Thus,
going back to the definition of the twisted GR-equivariant derived cate-
gory, one finds that DGR

(X)λ depends on λ ∈ h∗ only modulo the lattice
Λ:

DGR
(X)λ ! DGR

(X)λ+µ if µ ∈ Λ . (64)

In particular, for λ ∈ Λ, DGR
(X)λ ! DGR

(X). The roles of F and Oλ

in (63) can therefore be played by the constant sheaf CX and the sheaf
of holomorphic sections O(Lλ), with λ ∈ Λ. In that case the theorem
reduces to the Borel-Weil-Bott theorem. Similarly (62) reduces to two
special cases of Theorem 4.10.

4.5 Matsuki Correspondence

If Q ⊂ X is a K-orbit and S ⊂ X a GR-orbit, KR = K∩GR operates on
the intersection Q ∩ S. One calls Q and S dual in the sense of Matsuki
if Q∩S consists of exactly one KR-orbit. The relation “contained in the
closure of” partially orders the set of all K-orbits,

Q � Q′ ⇐⇒ Qcl ⊃ Q′ , (65)

and in the same way orders the set of all GR-orbits.

Theorem 4.11 (Matsuki [26]) The notion of duality between orbits
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induces a bijection

{GR-orbits on X} ←→ {K-orbits on X} ,

which reverses the closure relationships.

As in (40), let us consider the example of GR = SU(1, 1), G =
SL(2, C), K ! C∗. The flag variety of g is X = CP1 ! C ∪ {∞},
on which a ∈ C∗ ! K acts as multiplication by a2. Thus {0}, {∞}, and
C∗ are the K-orbits. The group SU(1, 1) acts transitively on the unit
disc D, the complement X −Dcl of the closure of D, and their common
boundary ∂D ! S1.

∞
X −Dcl

C∗ ∂D

D

0

K-orbits GR-orbits
Figure 4.1 Matsuki correspondence for SU(1, 1).

In this particular situation, duality means that one of the two orbits
contains the other, but that is not the case for a general group GR =
SU(1, 1).

Matsuki’s proof shows that K-equivariant twisted local systems on
a K-orbit Q correspond bijectively to the GR-equivariant twisted local
systems on the dual GR-orbit S, in both cases with the same twist λ ∈
h∗. As was mentioned, the GR-equivariant twisted local systems with
twist λ may be regarded as the basic building blocks of the twisted
GR-equivariant derived category DGR

(X)λ. Quite analogously, the K-
equivariant derived category DK(X)λ is built up from K-equivariant
twisted local systems with twist λ. But it is not at all obvious that
the bijection between equivariant twisted local systems carries over to
the extensions between them in the two categories. That was proved by
Mirković, Uzawa, and Vilonen:
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Theorem 4.12 (Matsuki correspondence of sheaves [28])
Matsuki duality induces an equivalence of categories

Ψ : DGR
(X)λ

∼−→ DK(X)λ .

The covariant deRham functor [19, 27] establishes an equivalence of
categories between the categories of, respectively, regular holonomic D-
modules and perverse sheaves constructible with respect to algebraic
stratifications. This is the so-called Riemann-Hilbert correspondence4.
In the context of an algebraic group action with finitely many orbits, all
coherent equivariant D-modules are automatically regular holonomic.
The deRham functor therefore restricts to a well defined functor

dR :
{

category of coherent
(D,K)-modules

}
−→ DK(X) . (66)

For our purposes, it will not matter that (66) defines an equivalence of
categories to the subcategory of perverse objects in DK(X). However,
we do need the twisted version of the deRham operator,

dR :
{

category of coherent
(Dλ,K)-modules

}
−→ DK(X)−λ ; (67)

it is contravariant with respect to the twisting, hence the appearance of λ

on the left and −λ on the right. Our final statement relates the Beilinson-
Bernstein construction to the construction of GR-representations in sec-
tion 4.4. Like Theorem 4.10, it was conjectured by Kashiwara [20] and
proved in [22].

Theorem 4.13 ([22]) If S is a coherent (Dλ,K)-module, and
dimC X = n, then the minimal globalization of the Harish-Chandra mod-
ule Hp(X,S) is isomorphic as GR-representation to the strong dual of
Extn−p(Ψ−1 ◦ dR S , O−λ−2ρ), for any p ∈ Z.

The sheaf Ψ−1 ◦dR S has twist −λ, but DK(X)−λ ! DK(X)−λ−2ρ

by the K-analogue of (64), so it does make sense to consider extensions
between Ψ−1 ◦ dR S and O−λ−2ρ .

Some properties of representations are easier to understand in terms
of the Beilinson-Bernstein construction, and others easier in terms of the
GR-construction. Theorems 4.10 and 4.13 make it possible to “play off”

4 The reader may consult Borel’s book [8] for a discussion of algebraic D-modules
in general and the Riemann-Hilbert correspondence in particular.
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the two sides against each other. The two theorems also play a crucial
role in the proof of the Barbasch-Vogan conjectures [30].
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12. R. Godement, Sur la théorie des représentations unitaires, Ann. of
Math. (2) 53 (1951), 68–124.

321



322 Bibliography

13. R. Gunning and H. Rossi, Analytic Functions of Several Complex
Variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.

14. Harish-Chandra, On some applications of the universal enveloping
algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70
(1951), 28–96.

15. Harish-Chandra, Representations of a semisimple Lie group on a Ba-
nach space I, Trans. Amer. Math. Soc. 75 (1953), 185–243.

16. S. Helgason, Differential Geometry, Lie Groups, and Symmetric
Spaces, Academic Press, New York, 1978.
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abstract
Deformation theory is a powerful tool – so far, a posteriori – in mod-
elling physical reality. We start with a short historical and philo-
sophical review of the context and concentrate this rapid presen-
tation on three interrelated directions where deformation theory is
essential in bringing a new framework – which has then to be de-
veloped using adapted tools, some of which come from the deforma-
tion aspect. Minkowskian space-time can be deformed into Anti de
Sitter, where representation theory shows us that massless particles
become composite (also dynamically). Nonlinear group representa-
tions and covariant field equations, coming from interactions, can be
viewed as some deformation of their linear (free) part, which pro-
vides a good framework for treating problems in that area. Last but
not least, (algebras associated with) classical mechanics (and field
theory) on a Poisson phase space can be deformed to (algebras asso-
ciated with) quantum mechanics (and quantum field theory). That is
now a frontier domain in mathematics and theoretical physics called
deformation quantisation, with multiple ramifications, avatars and
connections. These include representation theory, quantum groups
(when considering Hopf algebras instead of associative or Lie alge-
bras), noncommutative geometry and manifolds, algebraic geometry
(even algebraic curves à la Zagier), number theory, and of course
what is regrouped under the name of M-theory. We shall here look
at these from the unifying point of view of deformation theory and
refer to a limited number of papers as a starting point for further
study.
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1 Introduction

1.1 It ain’t necessarily so

Mathematics proceeds by logical deduction: If A, and A implies B,

then B. In other words, A is a sufficient condition for B to hold. As
simple as that sentence may seem, it is often distorted in ordinary life
where (due to external reasons) one is tempted to take for necessary a
sufficient condition. Schematically, it can be expressed as follows: Given

that A implies B, if I find B nice (thus want A because it will give me

B), then A. The subtle logical mistake is perpetrated by almost all in
experimental sciences when building models.

The need for modelling is as old as Science: more and more data are
being collected and it is natural to try and put some order there. So
from experimental data E one imagines a model M that can explain
them. Eventually (with deeper intuition) one can sometimes show that
the model M can be derived from more fundamental principles, from a
theory T . That is the implicit part, taken for granted by experimental
scientists (A implies B).

Now if new data E1 � E are found that can also be derived from T ,
i.e. B becomes nice, the model or theory receives experimental confirma-
tion (then A). One does not argue with success. The confusion between
necessary and sufficient conditions may go as far as saying that abstract
entities involved in T or M were “directly observed” with the new data:
in fact, what has been observed is only a consequence of these entities in
some model. [See e.g. in the Press Release for the 1999 Nobel prizes the
remark that “This [the top] quark was observed directly for the first time
in 1995 at the Fermilab in the USA,” somewhat strange for a “particle”
supposed to be confined and thus not directly observable.] The confusion
is enhanced by the fact that our interpretation of the raw experimental
data is made within existing models or theories, so that what we call an
experimental result may, in fact, be theory-dependent.

But it often happens that with a larger data set E′, the new data will
not be easily cast in the existing model. Then there will be a need to
develop a new model M ′, if possible deriving from a new theory T ′, that
can explain everything observed so far (one should not hope for a defini-
tive theory of everything). A scientist should therefore, even (especially)
when everything seems for the best in the best of possible worlds and
some are sure that we can now explain everything, be always prepared
for surprises and have, in the back of his mind, a tune playing it ain’t
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necessarily so in relation with the best accepted theories – even more
so when trying to block some avenues with so called “no go” theorems,
overlooking the hypotheses (sometimes hidden) on which they rely or
the lack of rigour in their proofs.

Such was the case towards the end of the nineteenth century with
classical Newtonian mechanics and electromagnetism. What happened
then shows that deformation theory, developed in an appropriate con-
text, can lead us to such “deformed” models and theories. In this review
I shall give strong “experimental evidence” to the effectiveness of defor-
mation theory, developed in an adequate context. The examples involve
the three components of this School (P, Q and R).

1.2 Epistemological importance of deformation theory

A scientist should try and answer three questions: why, what and how.
The bulk of the work is of course devoted to the last question. But if
research is maybe 1% inspiration and 99% perspiration, the inspiration
is an essential ingredient.

It is certainly better to know ‘what’ one is doing, and it helps a
lot to know ‘why.’ The knowledge of ‘why’ can often be imprecise and
implicit. But very few works turn out to be important if the answer to
the question ‘why?’ is ‘why not?’ – or if the research is merely solving a
problem posed by some adviser or a guru, without asking oneself why is
the problem important to solve.

In answering the three questions the human mind uses two very differ-
ent approaches: intuition and deduction. The distinction between both,
with examples, plays a major role in the work of Daniel Kahneman,
2002 Nobel laureate in Economics “for having integrated insights from
psychological research into economic science...” Intuition is an impor-
tant – albeit hard to evaluate – factor in the evolution of markets; its
effects may contradict (at least locally in time) what logical deduction
tells us. In science these two factors are present, with intuition playing
an important role. But in science there is an interaction between both
approaches, since an extensive study of notions often makes them so fa-
miliar that they can be subject to intuition. For scientists whose works
are seminal, that interaction is probably very intense.

Deformation theory provides a partial answer to the question how, at
least in the mathematical formulation and study of fundamental physics,
which is what we call physical mathematics. The knowledge of the cat-
egory (in the mathematical sense) where one defines the deformation
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clarifies what is done. We shall start by explaining why it is a powerful
tool.

One should never forget that physical theories have their domain of
applicability defined by the relevant distances, velocities, energies, etc.
involved. The passage from one domain (of distances, etc.) to another
does not happen in an uncontrolled way. Rather, experimental phenom-
ena appear that cause a paradox and contradict accepted theories. Even-
tually a new fundamental constant enters and the formalism is modified.
Then the attached structures (symmetries, observables, states, etc.) de-

form the initial structure. Namely, we have a new structure which in the
limit, when the new parameter goes to zero, coincides with the previous
formalism. The question is therefore, in which category do we seek for
deformations? Usually physics is rather conservative and if we start e.g.
with the category of associative or Lie algebras, we tend to deform in
the same category. But there are important examples of generalizations
of this principle: e.g. quantum groups are deformations of Hopf algebras.

The discovery of the non-flat nature of Earth may be the first ex-
ample of this phenomenon. Closer to us, the paradox coming from the
Michelson and Morley experiment (1887) was resolved in 1905 by Ein-
stein with the special theory of relativity: in our context, one can express
that by saying that the Galilean geometrical symmetry group of Newto-
nian mechanics is deformed to the Poincaré group, the new fundamental
constant being c−1 where c is the velocity of light in vacuum.

It is interesting to note that a first mathematical example of deforma-
tions was introduced at around the same time with the Riemann surface
theory, though deformations became systematically studied in the math-
ematical literature only at the end of the fifties with the profound works
of Kodaira and Spencer [45] on deformations of complex analytic struc-
tures. Now, when one has an action on a geometrical structure, it is
natural to try and “linearise” it by inducing from it an action on an
algebra of functions on that structure. This is implicitly what Gersten-
haber did shortly afterwards [40] with his definition and thorough study
of deformations of rings and algebras.

It is in the Gerstenhaber sense that the Galileo group is deformed
to the Poincaré group; that operation is the inverse of the notion of
group contraction introduced ten years before, empirically, by Ínönü
and Wigner [44], an earlier example of which can be found in [57]. This
fact triggered strong interest for deformation theory in France among a
number of theoretical physicists, including Flato who had just arrived
from the Racah school and knew well the effectiveness of symmetry



330 Deformation theory: A powerful tool in physics modelling

in physical problems. He was soon to realize that, however important
symmetry is as a notion and a tool in a mathematical treatment of
physical problems, it is not the only one and should be complemented
with other (often related) concepts: The notion of deformation can be
applied to a variety of categories that are used to express mathematically
the physical reality.

One should not forget that mathematics arose as an abstraction of
the physical world. Until the 19th century, most leading mathemati-
cians were also physicists, and vice-versa (sometimes also philosophers):
Archimedes, Newton, Pascal, Laplace, Gauss, to mention just a few in
the “Western World”. In the middle of the 20th century the two commu-
nities became so widely separated by a kind of “Babel tower effect” that
Wigner could marvel about the “unreasonable effectiveness of mathe-
matics in theoretical physics”. As Sir Michael Atiyah put it in his closing
talk at ICMP 2000 (paraphrasing Oscar Wilde about the US and UK),
“mathematics and physics became two communities separated by a com-
mon language.” Many mathematicians were proud of knowing nothing
about physics, and many physicists despise papers that are too math-
ematical for them; every senior scientist can put famous names behind
those attitudes, so I shall refrain from doing so.

In recent years the trend has been reversed, at least in mathematics.
Somehow, among the variety of mathematical problems that the hu-
man brain can imagine, those having a physical origin tend to be most
seminal – and mathematicians again realise that. The number of “quan-
tum Fields medals”, from Connes in 1982 to Kontsevich in 1998, is a
clear proof of it. In physics the two trends coexist, not always peace-
fully, sometimes with exaggeration. Many physicists tend to agree with
Goethe who said that “mathematicians are like Frenchmen, they trans-
late everything into their own language and henceforth it is something
entirely different.” But more and more now realise the importance of
being bilingual; as with languages, it is of consequence to learn both
languages at a young age, because knowing facts (by learning and de-
duction) is one thing and feeling them (intuitively) is another question.
There are at present a few living examples of truly bilingual scientists,
in all generations, but not enough.

In addition to, but not unrelated with, the importance of deformation
theory in model building, to which the bulk of this paper is devoted, an-
other fact played a major role in Flato’s philosophy: space-time cannot
be disconnected from truly fundamental models. Nowadays this seems
obvious, albeit with space-times that may have more than the traditional
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four dimensions, but insisting in keeping that direction of research open
(see e.g. [37]) was considered heretical in the mid 60’s when the main-
stream would not tolerate anything but particle spectroscopy based on
(phenomenological) unitary groups commuting with the Poincaré group.
In this spirit we were at that time led to look at the conformal group
and to another group [32] involving two kinds of translations, vectorial
and spinorial, applications of which to neutrino physics gave a prototype
of the Wess-Zumino [60] Poincaré supersymmetry.

On the epistemological side, that approach is in line with the phi-
losophy of Kant – and with Spinoza’s pantheistic views, according to
which (in mathematical terms) our Universe is a representation of an
abstract structure named God. The representation is possibly unfaith-
ful, but the question is metaphysical since we know no other represen-
tation. As pointed out in the Summer of 2002 in a weekly magazine by
the present French Minister of Education, the philosopher Luc Ferry,
Kant was the first to invert the traditional concept that God created
man from his own image. Kant, a deeply religious person, did not go as
far as the (blaspheming) opposite, later reached e.g. by marxists, but
his view was that one has to start with man’s imperfection and try and
get from it closer to God’s perfection. Deformation theory provides us
with a tool to do just that, starting with an imperfect description and
deforming it into a less imperfect one.

Doing so one may discover that often “complicated is simpler:” The
richer (deformed) structures carry more information, and may exhibit
a variety of properties that make them easier to tackle mathematically
than their more degenerate special cases.

The presentation that follows deals with a “trilogy” of interrelated
subjects where the deformation insight permits significant progress. In
his closing lecture of TH2002 in Paris, C.N. Yang described what he
called the “three melodies” that dominated the development of physics
in the twentieth century: quantisation, symmetries and “the phase fac-
tor” – the latter being of course, dealing with gauge theories, his favorite.
Interestingly those three tunes were already present – the latter in em-
bryonic form – in Hermann Weyl’s seminal book [61] from 1928, i.e.
quantisation, group theory and covariant field equations (in particular
Maxwell-Dirac, with their Abelian gauge). Missing there is the concept
of deformation which, as we have shown already in the 70’s, explains
the essence of quantisation. It also explains the passage from one kind
of symmetry to another, e.g. from the symmetry of classical (Galilean)
mechanics to that of special relativity and from the latter to Anti de
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Sitter when a tiny negative curvature is permitted. Then one cannot
do physics without looking at field equations, and the latter are usually
covariant under a symmetry group; but fields interact, in particular (but
not only) when operating a measurement, which brings in nonlinear field
equations, a kind of deformation of the free equations when a coupling
constant appears. Finally one needs, there also, to take into account
quantum effects, which brings us back to the problem of quantisation.
That is the basis of the trilogy pushed forward by Flato and coworkers
since the 70’s, which I survey here, devoting a little more space to the
quantisation part of the trilogy.

2 Composite elementary particles in AdS
microworld

It follows from our deformation philosophy that, in order to anticipate
new formalisms, we have to study deformations of the algebraic struc-
tures attached to a given formalism – and of course their representa-
tions, essential in physical applications. The only question is, in which
category do we perform this search for deformations. Usually physics is
rather conservative and if we start e.g. with the category of associative
or Lie algebras, we tend to deform in this category. In the passage from
Galilean physics to special relativity (new parameter c−1, where c is
the speed of light), we deform the symmetry of the theory. In the Lie
group (or algebra) category, there is a further deformation, giving rise
to physics in (anti) de Sitter space-time (the new parameter being the
curvature). It is this last aspect which we shall present here.

Recent experimental data indicate that the cosmological constant is
most likely positive, suggesting (assuming a space-time of constant cur-
vature, at least in first approximation) a de Sitter universe at cosmo-
logical distances. At our level, for (almost) all practical purposes, space-
time is Minkowskian (flat). We shall assume that, at a much smaller
scale, a tiny constant negative curvature is present, i.e. an anti de Sitter
(AdS) microworld. This Ansatz might be a consequence of the hidden
presence, at that level, of compactified extra dimensions and should be
related with ’t Hooft ideas on holography [43], ideas that go beyond
the AdS/CFT Maldacena conjecture [52]. As we shall see, that hypoth-
esis has far reaching consequences that among others could permit to
go beyond the Standard Model and in particular explain neutrino os-
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cillations and PC violation, and predict new mesons associated with
multiple Higgs.

In the Lie group category the deformation chain stops at AdS but one
can deform further the symmetry in the Hopf algebra category, to an AdS
quantum group, where new and interesting features appear, including
some very surprising (finite dimensional unitary representations) at root
of unity [31]. We shall here be conservative and remain within usual AdS.
But one should be open to the possibility to deform further, quantising
the symmetry group of AdS space-time and/or even space-time itself, in
a “stringy” way (e.g. adding 6 extra dimensions, compactified, so as to
give some “fuzziness” to points in AdS4, which might explain the local
negative curvature there) or with noncommutative geometry as in [12].

2.1 A qualitative overview

The strategy is the following. AdS4 group representation theory shows
us that the UIR (unitary irreducible representations) which, for many
good reasons (see e.g. [2]), should be called massless, are (in contradis-
tinction with the flat space limit) composed of two more degenerate UIR
of (the covering of) the AdS4 group SO(3, 2). The latter were discov-
ered by Dirac [17] and called singletons because the states appear on
a single line and not on a lattice. They are naturally confined because
their energy is proportional to angular momentum times the tiny cur-
vature, which would require a laboratory of cosmic dimensions to get a
measurable energy. We have called them Di and Rac, on the pattern of
“bra” and “ket”. They are the massless representations of the Poincaré
group in 2+1 dimensional space, where SO(3, 2) is the conformal group
(AdS4/CFT3 correspondence).

So far that compositeness is kinematical. Dynamics require in partic-
ular the consideration of field equations, initially at the first quantised
level, in particular the analogue of the Klein-Gordon equation in AdS4

for the Rac. There, as can be expected of massless (in 2+1 space-time)
representations, gauges appear. We thus have to deal with indecompos-
able representations, triple extensions of UIR, as in the Gupta-Bleuler
(GB) theory, and their tensor products. It is also desirable to take into
account conformal covariance at these GB-triplets level. The situation
gets therefore much more involved, quite different from the flat space
limit, which makes the theory even more interesting.

One can then attempt to “plug into” conventional QED by consid-
ering a massless photon composed of two scalar singletons. The idea is
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to take creation and annihilation operators for the Rac that satisfy un-
usual commutation relations (which is fine for confined entities) in such
a way that for the 2-Rac states (photons), the creation and annihilation
operators satisfy the usual canonical commutation relations (CCR). We
thus get a new and interesting infinite-dimensional Lie algebra, a kind of
“square root” of the CCR. The theory can be completed, including tak-
ing into account conformal covariance of triplets, and composite QED
was established [28].

After QED the natural step is to introduce compositeness in elec-
troweak theory. Along the lines described above, that would require
finding a kind of “square root of superalgebra”, with both CAR and
CCR included, obtained from creation and annihilation operators for
Di ⊕ Rac. That has yet to be done. Some steps in that direction have
been initiated but the mathematical problems are extremely compli-
cated, even more so since now the three flavours of leptons have to be
considered.

But here a more pragmatic approach can be envisaged [38], triggered
by recent experimental data which indicate that there are oscillations
between various flavours of neutrinos. The latter would thus not be mass-
less. This is not as surprising as it seems from the AdS point of view,
because one of the attributes of masslessness is the presence of gauges.
These are group theoretically associated with the limit of unitarity in
the representations diagram, and the neutrino is above that limit in
AdS: the Di is at the limit. Thus, all 9 leptons (electrons, muons, tau
and their neutrinos) can be treated on an equal footing. One is then
tempted to write them in a square table and consider them as compos-
ites LA

β = RADβ . In this empirical approach, the vector mesons of the
electroweak model are Rac − Rac composites and the model predicts
a new set of vector mesons that are Di −Di composites and that play
exactly the same role for the flavour symmetry UF (2) as the weak vector
bosons do for the weak group UW (2). A set (maybe five pairs) of Higgs
fields would have Yukawa couplings to the leptons currents and massify
the leptons (and the vector mesons and the new mesons). This attempt
has been developed in part in [38] (Frønsdal and I are still pursuing
that direction) and is qualitatively promising. In addition to the neu-
trino masses it could explain why the Higgs has so far escaped detection:
instead of one “potato” one has a gross purée of five, far more difficult
to isolate from background.

Quantitatively however its predictive power is limited by the presence
of too many free parameters. Maybe the addition to the picture of a



2 Composite elementary particles in AdS microworld 335

deformation induced by the strong force and of the 18 quarks (which
could be written in a cube and also considered composite) using fully the
orthosymplectic AdS4 supersymmetry and conformal covariance, and
possibly the power of noncommutative geometry [12], would make this
new “composite standard model” more predictive.

Intuitively the picture could be the following. Around the Planck
length we would have AdS microworlds, kind of black holes with which
we can communicate (in a way reminding ’t Hooft’s holography [43])
only by interaction at the surface, which in this case would be the “cone
at infinity” of these AdS microworlds (at this level, Planck length would
be treated mathematically as infinity for these microworlds) where the
singleton states live. The interaction of 2-singleton states with ambiant
Higgs fields (their presence might explain the “missing mass” of the
Universe) would create the flavourless massless photons, the flavoured
massive leptons that we know, and shorter lived quarks that are confined
near the surface and, in turn, give the hadrons as in conventional theory.
At present that picture is Science Fiction and it will remain so until more
precise models can be built along similar lines.

That is a challenge for the next generations, in terms both of the
mathematical tools that will have to be developed and of the physical
ideas and calculations required. Moshe died in sight of the Promised
Land; we are witnessing the crumbling of the walls of Jericho (the Stan-
dard Model); it is still a long way up to Jerusalem.

2.2 A brief more precise overview of the present state
of singleton symmetry and field theory

References and a short account can be found in [30] of which we shall
now, so as to give more background to the previous discussion, present
some highlights. We denote by D(E0, s) the minimal weight representa-
tions of the twofold covering of the connected component of the identity
of SO(2, 3). Here E0 is the minimal SO(2) eigenvalue and the half-
integer s is the spin. These irreducible representations are unitary pro-
vided E0 ≥ s + 1 for s ≥ 1 and E0 ≥ s + 1

2 for s = 0 and s = 1
2 .

The massless representations of SO(2, 3) are defined (for s ≥ 1
2 ) as

D(s + 1, s) and (for helicity zero) D(1, 0)⊕D(2, 0). At the limit of uni-
tarity the Harish Chandra module D(E0, s) becomes indecomposable
and the physical UIR appears as a quotient, a hall-mark of gauge the-
ories. For s ≥ 1 we get in the limit an indecomposable representation
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D(s + 1, s) → D(s + 2, s− 1), a shorthand notation [28] for what math-
ematicians would write as a short exact sequence of modules.

In gauge theories one needs extensions involving more than two UIRs.
A typical situation is the case of flat space electromagnetism where one
has the classical Gupta-Bleuler triplet which, in our shorthand notations,
can be written Sc → Ph → Ga. Here Sc (scalar modes) and Ga (gauge
modes) are massless zero-helicity UIRs of the Poincaré (inhomogeneous
Lorentz) group while Ph is the module of physical modes, transforming
under a sum of two UIRs of the Poincaré group with mass 0 and helicity
s = ±1. The scalar modes can be suppressed by a gauge fixing condition
(e.g. the Lorentz condition) and one is left with a nontrivial extension
Ph → Ga on the vector space Ph+̇Ga which has no invariant nonde-
generate metric and cannot be quantised covariantly. However the above
Gupta-Bleuler triplet is an indecomposable representation (a nontrivial
successive extension Sc → (Ph → Ga)) on a space which admits an
invariant nondegenerate (but indefinite) Hermitian form and it must be
used in order to obtain a covariant quantisation of this gauge theory. We
shall meet here a similar situation, which in fact cannot be avoided.

For s = 0 and s = 1
2 , the above mentioned gauge theory appears not at

the level of the massless representations D(1, 0)⊕D(2, 0) and D(3
2 , 1

2 ) but
at the limit of unitarity, the singletons Rac = D(1

2 , 0) and Di = D(1, 1
2 ).

These UIRs remain irreducible on the Lorentz subgroup SO(1, 3) and on
the (1+2) dimensional Poincaré group, of which SO(2, 3) is the confor-
mal group. The singleton representations have a fundamental property:
(Di ⊕ Rac) ⊗ (Di ⊕ Rac) = (D(1, 0) ⊕ D(2, 0)) ⊕ 2

⊕∞
s= 1

2
D(s + 1, s).

Note that all the representations that appear in the decomposition are
massless representations. Thus, in contradistinction with flat space, in
AdS4, massless states are “composed” of two singletons. The flat space
limit of a singleton is a vacuum and, even in AdS4, the singletons are
very poor in states: their (E, j) diagram has a single trajectory (hence
their name). In normal units a singleton with angular momentum j has
energy E = (j + 1

2 )ρ, where ρ is the curvature of the AdS4 universe.
This means that only a laboratory of cosmic dimensions can detect a j

large enough for E to be measurable. Elementary particles would then
be composed of two (possibly also three or more) singletons and/or anti
singletons, the latter being associated with the contragredient represen-
tations. As with quarks, several (at present three) flavours of singletons
(and anti singletons) should eventually be introduced to account for all
elementary particles. In order to pursue this point further we need to
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give a little more details on how to develop a field theory of singletons
and of particles composed of singletons.

For reasons explained in [26, 30] and references quoted therein, we
consider for the Rac, the dipole equation (� − 5

4ρ) 2φ = 0 with
the boundary conditions r

1
2 φ < ∞ as r → ∞, which carries the non-

decomposable representation D(1
2 , 0) → D(5

2 , 0). Quantisation needs a
non-degenerate, invariant symplectic structure. This requires the intro-
duction of additional modes, canonically conjugate to the gauge modes
(compare the situation in electrodynamics where Maxwell theory has no
momentum conjugate to gauge modes), to give to the total space the
symmetric form D(5

2 , 0) → D( 1
2 , 0) → D(5

2 , 0) or “ scalar → trans-
verse → gauge”. A remarkable fact is that this theory is a topological
field theory; that is [25], the physical solutions manifest themselves only
by their boundary values at r → ∞: lim r

1
2 φ defines a field on the 3-

dimensional boundary at infinity. There, on the boundary, gauge invari-
ant interactions are possible and make a 3-dimensional conformal field
theory (CFT). A 5-dimensional analogue of this 4-dimensional theory is
the 5-dimensional Anti de Sitter/4-dimensional conformal field theory
(AdS5/CFT4) duality which has found an interesting interpretation by
Maldacena [52] in the context of strings and branes.

However, if massless fields (in 4 dimensions) are singleton composites,
then singletons must come to life as four dimensional objects, and this
requires the introduction of unconventional statistics. The requirement
that the bilinears have the properties of ordinary (massless) bosons also
tells us that the statistics of singletons must be of another sort. The
basic idea is [28] that we can decompose the singleton field operator
as φ(x) =

∑∞
−∞ φj(x)aj in terms of positive energy creation operators

a∗j = a−j and annihilation operators aj (with j > 0) without so far
making any assumptions about their commutation relations. The choice
of commutation relations comes later, when requiring that photons, con-
sidered as 2−Rac fields (using the full tensor product of the two single-
ton triplets) be Bose-Einstein quanta. The singletons are then subject
to unconventional statistics (which is perfectly admissible since they are
naturally confined) and an appropriate Fock space can be constructed.
Based on these principles, a (conformally covariant) composite QED the-
ory was constructed [28], with all the good features of the usual theory.
In addition the BRST structure of singleton gauge theory induces [27]
the BRST structure of the electromagnetic potential.

A more recent contribution [29] to this interpretation of massless fields
as singleton composites deals with gravitons, giving an explicit expres-
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sion for the weak gravitational potential in terms of singleton bilinears.
If this idea is introduced in the context of bulk/boundary duality, it is
natural to relate massless fields on the bulk to conserved currents on
the boundary. But we are interested in the composite nature of massless
fields on space time (the bulk), and a direct current-field identity is then
inappropriate. It was shown [29] that the dipole formulation provides a
natural construction of all massless fields in terms of bilinears that are
conserved only by virtue of the gauge fixing condition on constituent
singleton fields.

3 Nonlinear covariant field equations

A cohomological (formal), then analytical, study of nonlinear Lie group
representations was started by us about 27 years ago [34]. Nonlinear
representations can be viewed as successive extensions of their linear
part S1 by its (symmetric) tensorial powers ⊗nS1, n ≥ 2: first S1 by
S1 ⊗ S1, then the result by ⊗3S1 and so on. Cohomology plays thus a
natural role. E.g. it is sufficient to have at least one invertible operator
in the representation of the centre of the enveloping algebra for the
corresponding 1-cohomology to vanish, rendering trivial an associated
extension.

That theory has given spectacular applications to covariant nonlin-
ear partial differential equations, in particular nonlinear and especially
the coupled Maxwell-Dirac equations (first-quantised electrodynamics)
[35, 36]. In such equations the nonlinearity appears as coupled to the
linear (free) equations, with a coupling constant that plays the role of
deformation parameter. Once the classical covariant field equations are
studied enough in details one can think [18] of studying their quantisa-
tion along the lines of deformation quantisation, e.g. by considering the
quantised fields as functionals over the initial data of the classical equa-
tions. This part is thus a natural component of our trilogy. We shall not
enter here into technical details and shall be satisfied with a qualitative
presentation of some consequences.
NonLinear Klein-Gordon equation The nonlinear Klein-Gordon equation
(NLKG) can be written as:

(� + m2) ϕ(t, x) = P (ϕ(t, x),
∂

∂t
ϕ(t, x),∇ϕ(t, x))

where m2 > 0, x ∈ Rn, n ≥ 2 and P is analytic (or only C∞) with
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no constant and no linear term (P (0) = 0 = dP (0)). We transform it
by standard methods into an evolution equation. We introduce appro-
priate Banach spaces which are completions of the differentiable vectors
space E∞ for the associated linear representation of the Poincaré Lie
algebra. Then local solutions are obtained by Lie theory [34]. Global so-
lutions [58] follow from the linearisability of the time translations which
(together with asymptotic freedom) will be a consequence of the exis-
tence of a solution to a related integral Yang-Feldman-Källén equation.
In this way one obtains global nonlinear representations, analytic lin-
earisability, global solutions and asymptotic completeness. For precise
statements, see [58, 35] and references therein. These methods permit
to include quadratic interactions in the equation in physical 1+3 di-
mensions, that had not been treated before. All these are scalar field
equations. Equations involving massless particles are more difficult to
treat, in particular due to infrared divergencies. Nevertheless the general
framework presented here is powerful enough to permit their treatment.
Asymptotic completeness, global existence and the infrared problem

for the Maxwell-Dirac equations. We refer here to the extensive mono-
graph [36] and especially to its introduction where the main results are
sketched.

The classical Maxwell-Dirac (MD) equations read, in the usual no-
tations of 3+1 dimensional space-time, �Aµ = ψγµψ, (iγµ∂µ + m)ψ =
Aµγµψ, ∂µAµ = 0, where Aµ is the electromagnetic potential, m > 0,
0 ≤ µ ≤ 3, ψ = ψ+γ0, ψ+ being the Hermitian conjugate of the Dirac
spinor ψ.
The Infrared Problem. On the classical level the infrared problem con-
sists of determining to which extent the long-range interaction created
by the coupling Aµjµ between the electromagnetic potential Aµ and the
current jµ = ψγµψ is an obstruction for the separation, when |t| → ∞, of
the nonlinear relativistic system into two asymptotic isolated relativistic
systems, one for the electromagnetic potential Aµ and one for the Dirac
field ψ. It has been proved in [36] that there is such an obstruction, which
in particular implies that asymptotic in and out states do not transform
according to a linear representation of the Poincaré group. This consti-
tutes a serious problem for the second quantisation of the asymptotic
(in and out going) fields. The particle interpretation usually requires
free relativistic fields, i.e. at least a linear representation of the Poincaré
group P0. Here we introduce nonlinear representations U (−) and U (+)

of the Poincaré group which give the Poincaré transformation of the
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asymptotic in and out states and permit a particle interpretation. In
mathematical terms the infrared problem of the MD equations consists
of determining diffeomorphisms (modified wave operators) Ωε satisfying
U

(ε)
g = Ω−1

ε ◦Ug ◦Ωε with g ∈ P0, ε = ±, the asymptotic representations
U (ε) being differentiable.

The same methods can be used for nonabelian gauge theories (of the
Yang-Mills type) coupled with fermions. The aim here is to separate
asymptotically the linear (modulo an infrared problem that can be a lot
worse in the nonabelian case) equation for the spinors from the pure
Yang-Mills equation (the Aµ part). The next step would be to linearise
analytically the pure Yang-Mills equation (that is known to be formally
linearisable), and then to combine all this with the deformation quanti-
sation approach to deal rigorously with the corresponding quantum field
theories.

The results on the Maxwell-Dirac equations give indications how a
true quantum field theory (i.e. not based on perturbative theory) can
be developed on the basis of this first quantised (classical) field theory,
dealing in particular with the infrared problem and the definition of ob-
servables. The quantisation should be based on the mathematical facts
found here and not on a nonrigourous perturbation theory developed
from the free field by canonical quantisation or using some algebraic
postulates which (however interesting they may seem) reflect sometimes
a “wishful thinking”. In other words the path to follow should be based
on “quantum deformations” (in the sense of star products) of the “classi-
cal” theory presented here. In this context it is important to get existence
theorems for large initial data and to be able to localise specific solutions
corresponding to large initial data, such as of the soliton or instanton
type. In 4-dimensional space-time these are very hard problems, which
is no surprise: Problems worthy of attack prove their worth by hitting
back!

4 Quantisation is a deformation

4.1 The Gerstenhaber theory of deformations of
algebras

A concise formulation of a Gerstenhaber deformation of an algebra (as-
sociative, Lie, bialgebra, etc.) is [40, 7]:

Definition. A deformation of an algebra A over a field K is a K[[ν]]-
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algebra Ã such that Ã/νÃ ≈ A. Two deformations Ã and Ã′ are said
equivalent if they are isomorphic over K[[ν]] and Ã is said trivial if it is
isomorphic to the original algebra A considered by base field extension
as a K[[ν]]-algebra.

Whenever we consider a topology on A, Ã is supposed to be topolog-
ically free. For associative (resp. Lie) algebras, the above definition tells
us that there exists a new product ∗ (resp. bracket [·, ·]) such that the
new (deformed) algebra is again associative (resp. Lie). Denoting the
original composition laws by ordinary product (resp. {·, ·}) this means
that, for u, v ∈ A (we can extend this to A[[ν]] by K[[ν]]-linearity) we
have:

u ∗ v = uv +
∞∑

r=1

νrCr(u, v) (1)

[u, v] = {u, v}+
∞∑

r=1

νrBr(u, v) (2)

where the Cr are Hochschild 2-cochains and the Br (skew-symmetric)
Chevalley 2-cochains, such that for u, v, w ∈ A we have (u ∗ v) ∗ w =
u ∗ (v ∗ w) and S[[u, v], w] = 0, where S denotes summation over cyclic
permutations.

For a (topological) bialgebra (an associative algebra A where we have
in addition a coproduct ∆ : A −→ A⊗A and the obvious compatibility
relations), denoting by ⊗ν the tensor product of K[[ν]]-modules, we can
identify Ã ⊗̂νÃ with (A ⊗̂A)[[ν]], where ⊗̂ denotes the algebraic tensor
product completed with respect to some topology (e.g. projective for
Fréchet nuclear topology on A), we similarly have a deformed coproduct
∆̃ = ∆+

∑∞
r=1 νrDr, Dr ∈ L(A,A⊗̂A), satisfying ∆̃(u∗v) = ∆̃(u)∗∆̃(v).

In this context appropriate cohomologies can be introduced [41, 6]. There
are natural additional requirements for Hopf algebras.

Equivalence means that there is an isomorphism Tν = I +
∑∞

r=1 νrTr,
Tr ∈ L(A,A) so that Tν(u ∗′ v) = (Tνu ∗ Tνv) in the associative case,
denoting by ∗ (resp. ∗′) the deformed laws in Ã (resp. Ã′); and similarly
in the Lie, bialgebra and Hopf cases. In particular we see (for r = 1)
that a deformation is trivial at order 1 if it starts with a 2-cocycle which
is a 2-coboundary. More generally, exactly as above, we can show [3]
([41, 6] in the Hopf case) that if two deformations are equivalent up to
some order t, the condition to extend the equivalence one step further
is that a 2-cocycle (defined using the Tk, k ≤ t) is the coboundary of
the required Tt+1 and therefore the obstructions to equivalence lie in the
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2-cohomology. In particular, if that space is null, all deformations are
trivial.

Unit. An important property is that a deformation of an associative
algebra with unit (what is called a unital algebra) is again unital, and
equivalent to a deformation with the same unit. This follows from a more
general result of Gerstenhaber (for deformations leaving unchanged a
subalgebra) and a proof can be found in [41].
Remark. 1) In the case of (topological) bialgebras or Hopf algebras,
equivalence of deformations has to be understood as an isomorphism of
(topological) K[[ν]]-algebras, the isomorphism starting with the identity
for the degree 0 in ν. A deformation is again said trivial if it is equiv-
alent to that obtained by base field extension. For Hopf algebras the
deformed algebras may be taken (by equivalence) to have the same unit
and counit, but in general not the same antipode.
2) Deformations that are more general than those of Gerstenhaber can
(and have been [19, 56, 54]) introduced, where e.g. the deformation “pa-
rameter” may act on the algebra.

4.2 From quantisation to the invention of deformation
quantisation

The need for quantisation appeared for the first time in 1900 when,
faced with the impossibility to explain otherwise the black body radi-
ation, Planck proposed the quantum hypothesis: the energy of light is
not emitted continuously but in quanta proportional to its frequency.
He wrote h for the proportionality constant which bears his name. This
paradoxical situation got a beginning of a theoretical basis when, in 1905,
Einstein came with the theory of the photoelectric effect – for which he
was awarded the Nobel prize in 1922 (for 1921). Around 1920, Prince
Louis de Broglie was introduced to the photoelectric effect, together with
the Planck–Einstein relations and the theory of relativity, in the labo-
ratory of his much older brother, Maurice duc de Broglie. This led him,
in 1923, to his discovery of the duality of waves and particles, which
he described in his celebrated Thesis published in 1925, and to what
he called ‘mécanique ondulatoire’. German and Austrian physicists, in
particular, Hermann Weyl, Werner Heisenberg and Erwin Schrödinger,
followed by Niels Bohr, transformed it into the quantum mechanics that
we know, where the observables are operators in Hilbert spaces of wave



4 Quantisation is a deformation 343

functions – and were lead to its probabilistic interpretation that neither
Einstein nor de Broglie were at ease with.

Intuitively, classical mechanics is the limit of quantum mechanics
when � = h

2π goes to zero. But how can this be realised when in classi-
cal mechanics the observables are functions over phase space (a Poisson
manifold) and not operators? The deformation philosophy promoted by
Flato shows the way: one has to look for deformations of algebras of
classical observables, functions over Poisson manifolds, and realise there
quantum mechanics in an autonomous manner.

What we call “deformation quantisation” relates to (and generalizes)
what in the conventional (operator) formulation are the Heisenberg pic-
ture and Weyl’s quantisation procedure. In the latter [61], starting with
a classical observable u(p, q), some function on phase space R2� (with
p, q ∈ R�), one associates an operator (the corresponding quantum ob-
servable) Ω(u) in the Hilbert space L2(R�) by the following general
recipe:

u �→ Ωw(u) =
∫

R2�

ũ(ξ, η)exp(i(P.ξ + Q.η)/�)w(ξ, η) d�ξd�η (3)

where ũ is the inverse Fourier transform of u, Pα and Qα are opera-
tors satisfying the canonical commutation relations [Pα, Qβ ] = i�δαβ

(α, β = 1, ..., �), w is a weight function and the integral is taken in the
weak operator topology. What is now called normal ordering corresponds
to choosing the weight w(ξ, η) = exp(−1

4 (ξ2 ± η2)), standard ordering
(the case of the usual pseudodifferential operators in mathematics) to
w(ξ, η) = exp(− i

2ξη) and the original Weyl (symmetric) ordering to
w = 1. An inverse formula was found shortly afterwards by Eugene
Wigner [62] and maps an operator into what mathematicians call its
symbol by a kind of trace formula. For example Ω1 defines an isomor-
phism of Hilbert spaces between L2(R2�) and Hilbert-Schmidt operators
on L2(R�) with inverse given by

u = (2π�)−� Tr[Ω1(u) exp((ξ.P + η.Q)/i�)] (4)

and if Ω1(u) is of trace class one has Tr(Ω1(u)) = (2π�)−�
∫

uω� ≡
TrM(u), the “Moyal trace”, where ω� is the (symplectic) volume dx on
R2�. Numerous developments followed in the direction of phase-space
methods, many of which are described in [1]. Of particular interest to us
here is the question of finding an interpretation to the classical function
u, symbol of the quantum operator Ω1(u); this was the problem posed
(around 15 years after [62]) by Blackett to his student Moyal. The (some-
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what naive) idea to interpret it as a probability density had of course to
be rejected (because u has no reason to be positive) but, looking for a
direct expression for the symbol of a quantum commutator, Moyal found
[53] what is now called the Moyal bracket:

M(u1, u2) = ν−1 sinh(νP )(u1, u2)

= P (u1, u2) +
∞∑

r=1

ν2r

(2r + 1)!
P 2r+1(u1, u2) (5)

where 2ν = i�, P r(u1, u2) = Λi1j1 . . . Λir jr (∂i1...ir
u1)(∂j1...jr

u2) is the rth

power (r ≥ 1) of the Poisson bracket bidifferential operator P , ik, jk =

1, . . . , 2�, k = 1, . . . , r and (Λik jk ) =
(

0 −I

I 0

)
. To fix ideas we may

assume here u1, u2 ∈ C∞(R2�) and the sum is taken as a formal series
(the definition and convergence for various families of functions u1 and
u2 was also studied, including in [3]). A similar formula for the symbol
of a product Ω1(u)Ω1(v) had been found a little earlier [42] and can now
be written more clearly as a (Moyal) star product:

u1 ∗M u2 = exp(νP )(u1, u2) = u1u2 +
∞∑

r=1

νr

r!
P r(u1, u2). (6)

One recognizes in (6) a special case of (1), and similarly for the bracket.
So, via a Weyl quantisation map, the algebra of quantised observables
can be viewed as a deformation of that of classical observables.

Several integral formulas for the star product have been intro-
duced and the Wigner image of various families of operators (including
bounded operators on L2(R�)) were studied. The formal series may be
deduced (see e.g. [5]) from an integral formula of the type:

(u1 ∗ u2)(x) = c�

∫
R2�×R2�

u1(x + y)u2(x + z)e−
i
�
Λ−1(y,z)dydz. (7)

It was noticed, however after deformation quantisation was intro-
duced, that the composition of symbols of pseudodifferential operators
(ordered, like differential operators, “first q, then p”) used e.g. in index
theorems, is a star product. Starting from field theory, where normal
(Wick) ordering is essential (the role of q and p above is played by
q ± ip), Berezin [4] developed in the mid-seventies an extensive study
of what he called “quantisation”, based on the correspondence principle
and Wick symbols. It is essentially based on Kähler manifolds and re-
lated to pseudodifferential operators in the complex domain [9]. However
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in his theory (which we noticed rather late), as in the studies of various
orderings [1], the important concepts of deformation and autonomous
formulation of quantum mechanics in general phase space are absent.

Quantisation involving more general phase spaces was treated, in a
somewhat systematic manner, only with Dirac constraints [16]: second
class Dirac constraints restrict phase space from some R2� to a symplectic
manifold W imbedded in it (with induced symplectic form), while first
class constraints further restrict to a Poisson manifold with symplectic
foliation (see e.g. [33]). The question of quantisation on such manifolds
was certainly treated by many authors (including [16]) but did not go
beyond giving some (often useful) recipes and hoping for the best.

A first systematic attempt started around 1970 with what was called
soon afterwards geometric quantisation [51], a by-product of Lie group
representations theory where it gave significant results. It turns out that
it is geometric all right, but its scope as far as quantisation is concerned
has been rather limited since few classical observables could be quan-
tised, except in situations which amount essentially to the Weyl case
considered above. In a nutshell one considers phase-spaces W which
are coadjoint orbits of some Lie groups (the Weyl case corresponds to
the Heisenberg group with the canonical commutation relations); there
one defines a “prequantisation” on the Hilbert space L2(W ) and tries
to halve the number of degrees of freedom by using polarizations (of-
ten complex ones, which is not an innocent operation as far as physics
is concerned) to get a Lagrangean submanifold L of dimension half of
that of W and quantised observables as operators in L2(L). A recent
exposition can be found in [63]. Since physicists have no problem with
quantising classical observables (at least in flat space), there was clearly
a practical gap that needed to be filled. From the conceptual point of
view, the “quantum jump” in the nature of observables required also
an explanation. The answer to both questions was given by deformation
quantisation, reviewed recently more in details in [20, 59].

4.3 Deformation quantisation and its developments

We want to stress that deformation quantisation is not merely “a refor-
mulation of quantising a mechanical system” [22], e.g. in the framework
of Weyl quantisation: The process of quantisation itself is a deforma-

tion. In order to show that explicitly it was necessary to treat in an
autonomous manner significant physical examples, without recourse to
the traditional operator formulation of quantum mechanics. That was
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achieved in [3] with the paradigm of the harmonic oscillator and more,
including the angular momentum and the hydrogen atom. In particu-
lar what plays here the role of the unitary time evolution operator of a
quantised system is the “star exponential” of its classical Hamiltonian
H (expressed as a usual exponential series but with “star powers” of
tH/i�, t being the time, and computed as a distribution both in phase
space variables and in time); in a very natural manner, the spectrum of
the quantum operator corresponding to H is the support of the Fourier-
Stieltjes transform (in t) of the star exponential (what Laurent Schwartz
had called the spectrum of that distribution). We thus get the discrete
spectrum (n + �

2 )� of the harmonic oscillator H = 1
2 (p2 + q2) and the

continuous spectrum R for the dilation generator pq. The eigenprojec-
tors are given [3] by known special functions on phase-space (generalized
Laguerre and hypergeometric, multiplied by some exponential). Other
examples can be brought to this case by functional manipulations [3]. For
instance the Casimir element of so(�) representing angular momentum
has n(n+(�−2))�2 for spectrum. For the hydrogen atom, with Hamilto-
nian H = 1

2p2 − |q|−1, the Moyal product on R8 induces a star product
on X = T ∗S3; the energy levels, solutions of (H −E) ∗ φ = 0, are found
to be (as they should) E = 1

2 (n+1)−2�−2 for the discrete spectrum, and
E ∈ R+ for the continuous spectrum. We thus have recovered, in a com-
pletely autonomous manner entirely within deformation quantisation,
the results of “conventional” quantum mechanics in these typical exam-
ples. Further examples were (and are still being) developed, in particular
in the direction of field theory.

That aspect of deformation theory has in the past 27 years or so been
extended considerably. It now includes general symplectic [15, 23, 24, 55]
and Poisson (finite dimensional) manifolds [46, 47, 10], with further re-
sults for infinite dimensional manifolds, for “manifolds with singulari-
ties” and for algebraic varieties, and has many far reaching ramifica-
tions in both mathematics and physics (see e.g. a brief overview in [20]).
As in quantisation itself [61], symmetries (group theory) play a special
role and an autonomous theory of star representations of Lie groups
was developed, in the nilpotent and solvable cases of course (due to
the importance of the orbit method there), but also in other significant
examples. Among the latter are those where one makes full use of the
Hopf algebra structures and of the “duality” between the group struc-
ture and the set of its irreducible representations, recently reviewed in
[8]. Deformation theory (and Hopf algebras) are seminal in a variety of
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problems ranging from theoretical physics (see e.g. [14, 20]), including
renormalisation and Feynman integrals and diagrams, to algebraic ge-
ometry and number theory (see e.g. [48, 50]), including algebraic curves
à la Zagier (cf. Connes’ lectures at Collège de France [13] and his lecture
in PQR2003.)

We shall not here go further in the details of the developments of
deformation quantisation, for which we refer e.g. to the latest reviews
[20, 8]. More can be found on the deformation quantisation web site:

http://idefix.physik.uni-freiburg.de/˜star/
To conclude this short presentation, we point out that deformation

quantisation is intimately related to the other topics of the present
school. As can be seen from its origin and from the many developments
of “star representations” of Lie groups, there could be mutually benefi-
cial interaction between deformation quantisation and the representation
theory of Lie groups (especially reductive, where there is still important
work to be done). The metamorphoses of deformation quantisation, in
particular for Poisson manifolds [46, 47, 49] and algebraic varieties [48],
are related to some of the deepest recent mathematical developments.
Poisson geometry and groupoids are important tools there. Furthermore,
quantum groups can be viewed as an avatar of deformation quantisation
[8], when the category in question is that of Hopf algebras and natural
topological vector space topologies, associated with Lie group represen-
tation theory, are introduced. The more algebraic theory of polynomials
of noncommutative variables developed recently by Gelfand (see e.g.
[39]), and especially noncommutative geometry, are very much related
to deformation quantisation in several respects. Some are presented in
Connes’ book [11]; a very elaborate beginning of the theory of noncom-
mutative manifolds (especially in dimension 4) can be found in [12]; they
play an increasing role in modern theoretical physics, including string
and M-theory, where star products play a role [21]. Exciting times ...
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Poincaré duality, 268
pointed Q-manifold, 114
pointed manifold, 114
pointed map, 114
pointed vector field, 114
Poiss category, 55
Poisson algebra, 5
Poisson bivector field, 93
Poisson bracket, 89
Poisson manifold, 89, 345–347

fibrating, 62
inner automorphism, 59
integrable, 41

Poisson map, 18
complete, 18

Poisson reduction, 23
Poisson sigma model, 42
Poisson structure, 5

formal, 93
gauge transformation, 64
linearization problem, 14
nonintegrable, 45
regular, 13
twisted, 12
zero, 43, 60

pre-L∞-morphism, 98
pre-Lie structure, 107
prequantisation, 345
presheaf, 232
presymplectic, 7
presymplectic groupoid

twisted, 46
presymplectic leaves, 15
presymplectic realization, 51
presymplectic structure

twisted, 12
principal bundle, 164

locally trivial, 165
product Lie groupoid, 160
proper base change, 226
proper Lie groupoid, 154

pseudodifferential operators, 344

Q-field, 114
Q-map, 116
quantisation, 331, 340
quantum group, 333, 347
quasi-hamiltonian action, 52
quasi-inverse, 99
quasi-isomorphic, 96
quasi-isomorphism, 96, 206

Rac, 333
realization, 198
regular bimodule, 54, 55
Rieffel induction

geometric, 40
Rieffel tensor product, 31
right action, 163
right derived functor, 208
right principal K-bundle, 238

Schouten–Nijenhuis bracket, 105
semi-direct product groupoid, 163
Sh(G), 178
Sh(M), 178
sheaf, 176, 221
sheaf cohomology, 211
sheaf of connected components, 180
sheaf topology, 177
ShR(G), 201
shuffle permutation, 117
simplicial manifold, 214
singletons, 333
small loop, 121
smooth natural transformation, 159
soft, 221
source, 151
space of orbits, 153
space-time, 330
splitting theorem, 13
stacks, 42, 64, 67
stalk, 177
Star(v), 121
star exponential, 346
star product, 33, 88, 344

equivalence class, 90
equivalent, 90
integral formulas, 344

star representation, 346
strata

of type S1, 129



Index 359

of type S2, 129
strong fibered product, 160
strong force, 335
structure maps, 151
sum Lie groupoid, 160
symmetric algebra, 97
symmetries, 331
symmetry, 329
symplectic, 5
symplectic categories of representations,

70
symplectic category, 69
symplectic groupoid, 41

twisted, 45
symplectic groupoid actions, 49
symplectic leaves, 14
symplectic manifold, 346
symplectic map, 22
symplectic realization, 18
symplectic reduction, 39
symplectic torsors, 67

target, 151
tensor algebra, 97

reduced, 97
tensor product of modules over a

Poisson manifold, 39
topological field theory, 337
topologically stable structures, 57
torsor, 48
transitive Lie groupoid, 154
transverse structure, 14
triple extensions, 333
twisting map, 97

unconventional statistics, 337
unit, 342
unit bundle, 164
unit groupoid, 153
universal covering space over G, 192

variation lattice, 62

weak equivalence, 152
weak fibered product, 161
weakly equivalent Lie groupoids, 152
weight, 122
Weyl curvature, 138
Weyl’s quantisation, 343


	Cover
	Frontmatter
	Contents
	Preface
	Part One - Poisson geometry and morita equivalence
	1 - Introduction
	2 - Poisson geometry and some generalizations
	2.1 Poisson manifolds
	2.2 Dirac structures
	2.3 Twisted structures
	2.4 Symplectic leaves and local structure of Poisson manifolds
	2.5 Presymplectic leaves and Dirac manifolds
	2.6 Poisson maps
	2.7 Dirac maps

	3 - Algebraic Morita equivalence
	3.1 Ring-theoretic Morita equivalence of algebras
	3.2 Strong Morita equivalence of C*-algebras
	3.3 Morita equivalence of deformed algebras

	4 - Geometric Morita equivalence
	4.1 Representations and tensor product
	4.2 Symplectic groupoids
	4.3 Morita equivalence for groups and groupoids
	4.4 Modules over Poisson manifolds and groupoid actions
	4.5 Morita equivalence and symplectic groupoids
	4.6 Picard groups
	4.7 Fibrating Poisson manifolds and Morita invariants
	4.8 Gauge equivalence of Poisson structures

	5 - Geometric representation equivalence
	5.1 Symplectic torsors
	5.2 Symplectic categories
	5.3 Symplectic categories of representations

	Bibliography

	Part Two - Formality and star products
	1 - Introduction
	1.1 Physical motivation
	1.2 Historical review of deformation quantization
	1.3 Plan of the work

	2 - The star product
	3 - Rephrasing the main problem: the formality
	3.1 DGLA's, L[INFINITY]- algebras and deformation functors
	3.2 Multivector fields and multidifferential operators
	3.3 The first term: U1

	4 - Digression: what happens in the dual
	5 - The Kontsevich formula
	5.1 Admissible graphs, weights and B[GREEK CAPITAL LETTER GAMMA]'s
	5.2 The proof: Stokes' theorem & Vanishing theorems

	6 - From local to global deformation quantization
	Bibliography

	Part Three - Lie groupoids, sheaves and cohomology
	1 - Introduction
	2 - Lie groupoids
	2.1 Lie groupoids and weak equivalences
	2.2 The monodromy and holonomy groupoids of a foliation
	2.3 Etale groupoids and foliation groupoids
	2.4 Some general constructions
	2.5 Principal bundles as morphisms
	2.6 The principal bundles category

	3 - Sheaves on Lie groupoids
	3.1 Sheaves on groupoids
	3.2 Functoriality and Morita equivalence
	3.3 The fundamental group and locally constant sheaves
	3.4 G-sheaves of R-modules
	3.5 Derived categories

	4 - Sheaf cohomology
	4.1 Sheaf cohomology of foliation groupoids
	4.2 The bar resolution for étale groupoids
	4.3 Proper maps and orbifolds
	4.4 A comparison theorem for foliations
	4.5 The embedding category of an étale groupoid
	4.6 Degree one cohomology and the fundamental group

	5 - Compactly supported cohomology
	5.1 Sheaves over non-Hausdorff manifolds
	5.2 Compactly supported cohomology of éetale groupoids
	5.3 The operation [GREEK SMALL LETTER PHI]!
	5.4 Leray spectral sequence, and change-of-base
	5.5 Homology of the embedding category

	Bibliography

	Part Four - Geometric methods in representation theory
	1 - Reductive Lie Groups: Definitions and Basic Properties
	1.1 Basic Definitions and Examples
	1.2 The Cartan Decomposition
	1.3 Complexifications of Linear Groups

	2 - Compact Lie Groups
	2.1 Maximal Tori, the Unit Lattice, and the Weight Lattice
	2.2 Weights, Roots, and the Weyl Group
	2.3 The Theorem of the Highest Weight
	2.4 Borel Subalgebras and the Flag Variety
	2.5 The Borel-Weil-Bott Theorem

	3 - Representations of Reductive Lie Groups
	3.1 Continuity, Admissibility, K[DOUBLE-STRUCK CAPITAL R]-finite and C[INFINITY] Vectors
	3.2 Harish-Chandra Modules

	4 - Geometric Constructions of Representations
	Bibliography

	Part Five - Deformation theory: a powerful tool in physics modelling
	1 - Introduction
	1.1 It ain't necessarily so
	1.2 Epistemological importance of deformation theory

	2 - Composite elementary particles in AdS microworld
	2.1 A qualitative overview
	2.2 A brief overview of singleton symmetry & field theory

	3 - Nonlinear covariant field equations
	4 - Quantisation is a deformation
	4.1 The Gerstenhaber theory of deformations of algebras
	4.2 The invention of deformation quantisation
	4.3 Deformation quantisation and its developments

	Bibliography

	Index

